
Automating network heuristic design and analysis

Anup Agarwal
†
, Venkat Arun

§
, Devdeep Ray

†
, RubenMartins

†
, Srinivasan Seshan

†
†Carnegie Mellon University, §MIT CSAIL

ABSTRACT
Heuristics are ubiquitous in computer systems. Examples in-

clude congestion control, adaptive bit rate streaming, schedul-

ing, load balancing, and caching. In some domains, theoretical

proofs have provided clarity on the conditionswhere a heuris-

tic is guaranteed to work well. This has not been possible

in all domains because proving such guarantees can involve

combinatorial reasoning making it hard, cumbersome and

error-prone. In this paper we argue that computers should

help humans with the combinatorial part of reasoning. We

model reasoning questions as ∃∀ formulas [1] and solve them

using the counterexample guided inductive synthesis (CEGIS)

framework. As preliminary evidence, we prototype CCmatic,

a tool that semi-automatically synthesizes congestion con-

trol algorithms that are provably robust. It rediscovered a

recent congestion control algorithm that provably achieves

high utilization and bounded delay under a challenging net-

workmodel. It also found previously unknown variants of the

algorithm that achieve different throughput-delay trade-offs.

CCS CONCEPTS
•Networks→ Protocol correctness; Transport protocols;
• Theory of computation→Automated reasoning;

KEYWORDS
Automated reasoning, Congestion control

ACMReference Format:
Anup Agarwal

†
, Venkat Arun

§
, Devdeep Ray

†
, Ruben Martins

†
,

Srinivasan Seshan
†
. 2022. Automating network heuristic design and

analysis. In The 21st ACMWorkshop on Hot Topics in Networks (Hot-
Nets ’22), November 14–15, 2022, Austin, TX, USA.ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3563766.3564085

1 INTRODUCTION
Heuristics permeate computer systems, including congestion

control, traffic engineering, CPU/cluster scheduling, adaptive

bit rate (ABR) algorithms, load-balancing, and caching. For

some heuristics and domains, we have formal guarantees on

Permission tomakedigitalorhardcopiesofpartorall of thiswork forpersonal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for third-party components

of this workmust be honored. For all other uses, contact the owner/author(s).

HotNets’22, November 14–15, 2022, Austin, TX, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9899-2/22/11.

https://doi.org/10.1145/3563766.3564085

what heuristics are best for certain workloads, or environ-

ment assumptions (e.g.,work-stealing for scheduling [11] and,

LRU for cache replacement policies [2]). These theoretical

results are backed up by the popularity of these algorithms

in practice [46]. However, for most heuristics and domains,

we either do not have such guarantees, or the guarantees are

proven under unrealistic assumptions. In some areas, lack

of clarity has led to hundreds of papers with promises of im-

proved performance. In this paper, we ask “What would it

take to obtain formal guarantees in these areas?”.

Two challenges make this hard. First, heuristics operate

in many environments, and balance multiple objectives. It

is laborious to analyze and obtain guarantees for a large

number of environment/objective pairs. For instance, in con-

gestion control
1
, the environments include various network

types (e.g. wired [15, 35], cellular [67, 72], satellite [13], data-

center [3, 73], networks with explicit feedback [31, 39]), and

CCAs balance between an often conflicting set of objectives,

e.g., throughput [35], delay [12, 15], co-existence/fairness [7,

27, 32], priority [48, 58], and flow/co-flow completion time [4,

18, 23], to cater to the diverse needs of different applications.

Second, the environment andheuristics can interact in com-

plex ways. Reasoning about them can be cumbersome and

error-prone. For instance, in congestion control, one needs to

carefully consider subtleties of duplicate acknowledgements

(ACKs), timeouts, ACK aggregation, delayed ACKs, token

bucket filters, and transmission timing jitter that are common

in real networks [6].

Both challenges above pertain to the combinatorial explo-

sion of possibilities when reasoning about systems. This is

where computers shine [28]We envision a human-computer

collaboration where computers do combinatorial reasoning

to broadly answer two types of questions, (a) given the en-

vironment assumptions, design an algorithm that provably

achieves some given desired properties under the environ-

ment, and (b) given an algorithm, generate assumptions about

the environment under which the algorithm is guaranteed

to achieve given desired properties. Humans can iteratively

update the desired properties, and/or the search space for

algorithms and assumptions depending on their use-case.

In this paper, we explore the feasibility of our human-

computer collaboration approach by designing a tool, CC-

matic, that automates reasoning about congestion control

1
Weuse congestion control as the running example in this paper. §5 discusses

other domains.

https://doi.org/10.1145/3563766.3564085
https://doi.org/10.1145/3563766.3564085

HotNets’22, November 14–15, 2022, Austin, TX, USA A. Agarwal, V. Arun, et al.

algorithms. Wemodel reasoning questions as ∃∀ logical for-
mulas, and use the counter-example guided inductive syn-

thesis (CEGIS) framework to solve the formulas [1, 61]. The

CEGIS framework involves iterative interactions between a

generator and a verifier. The generator proposes a candidate

solution from a defined search space, while the verifier pro-

duces a counterexample that breaks the proposed candidate.

Weovercomeseveral technical challenges to tractably solve

our formulas (§3). For instance, we carefully construct the

generator’s search space to ensure it captures a variety of

possible solutions while keeping it simple enough to keep the

search tractable. Further, CEGIS is prone to enumerating the

search space as each counterexample eliminates only a few

candidate solutions [1, 59].We use domain specific insights to

encodemore informationaboutwhya counterexample breaks

candidate solutions, allowing us to prune a larger part of the

search space per counterexample. Our optimizations collec-

tively improve solving time by at least 60×. While domain

specific, our optimizations have mathematical equivalents

and can be applied to other domains as well (§3.1.2, §5).

We show that automation can help quickly explore large

design spaces. We ask CCmatic to find CCAs that provably

achieve high utilization and bounded delay under a recently

proposed network model [6]. CCmatic was not only able to

generate algorithms that matched existing non-intuitive de-

signs [24, 63], it was able to produce several variants of this

design. These variants provide a new range of throughput-

delay trade-offs that the existing design did not explore.

Outline.We elaborate the reasoning queries that we hope to

answer (§2), describe our approach, technical challenges, and

salient features of our design (§3), and our results (§4). We

believe that our approach can answer other reasoning queries

within congestion control, and also answer similar queries

in other domains like adaptive bit-rate streaming (ABR), and

scheduling. We discuss anticipated challenges and ideas to

generalize our work (§4.1, §5).

2 VISIONAND SCOPE
Designing and analyzing heuristics is a difficult task. Many

prior works have tried to address this problem. For the design

part, prior work used techniques such as optimization [66],

analytical modelling [45, 65], and reinforcement learning [44,

69]. For analysis part, techniques such as fuzzing/testing [14,

37, 62], and benchmarking frameworks [52, 70], have been

proposed. A recent work, CCAC [6], proposed the use of for-

mal techniques to verify whether a given congestion control

algorithm (CCA) satisfies a given desirable property. Formal

techniques have the advantage of providing provable guar-

antees. Inspired by CCAC, we investigate the use of formal

techniques to automate important steps in the methodology

of design and analysis of heuristics.

We believe the following steps can be (partially) automated:

(1) synthesizing heuristics, (2) identifying assumptions, (3)

differential comparison. Our approach is to frame and solve

automation questions as ∃∀ formulas.

Synthesizing heuristics.We seek to synthesize heuristics

that provably ensure certain desired properties under a spec-

ified environment. Synthesizing a heuristic means deciding

what controllable actions should be taken in response to ob-

servable signals. For instance foraCCA,wesynthesize conges-

tion window/rate changes in response to measurable signals

like acknowledgements, delays, and losses.

This was one of the motivations of CCAC, where develop-

ers can iteratively query CCAC to obtain counterexamples

that can inform their CCA design. Designing robust CCAs

that work under all target circumstances is non-trivial, so we

reduce the developer’s effort by formulating and automati-

cally answering the CCA synthesis query, “does there exist
a CCA such that for all realistic network traces (e.g., those

allowed in the CCACmodel), the CCA achieves the given de-

sired properties (e.g. high utilization and/or bounded delay)”.

Program synthesis techniques have recently been used to

reverse engineer CCAs fromnetwork traces [26]. Encouraged

by them, we apply similar techniques to synthesize (possibly

novel) CCAs that provably ensure desired properties.

Identifying assumptions.Designs and implementations of

heuristics often make implicit assumptions about the envi-

ronment they operate in. For instance, Copa [7] assumes that

queuing delays are close to zero under low utilization [6].

Uncovering such implicit assumptions is hard. Existing

techniques like fuzzing/testing and even CCAC, produce con-

crete counterexampleswhere heuristics fail. These counterex-

amples are often hard to interpret. Instead, we seek to synthe-

size assumptions as logical constraints that (1) serve as a high

level description of equivalence classes of counterexamples

and (2) are human interpretable.

Formally, we ask “does there exist an assumption such that

for all system traces, the system trace ensures given desirable

properties iff the trace satisfies the assumption”. Synthesized

assumptions take the form of logical constraints on system’s

environment, e.g., “a network can delay packets by at most

100𝜇𝑠”. Such logical constraints are easier to interpret than

an execution trace of a system.

Differential comparison.We can formally perform differ-

ential comparison between heuristics by asking queries like:

“given CCA𝐴, CCA 𝐵, and some desirable properties, for all

networks on which CCA𝐴 ensures the desirable properties,

what are additional network constraints are needed for CCA

𝐵 to ensure the properties”. Such queries are useful for system

operators to decide what heuristic they might want to deploy

in their custom system. Again, similar to queries on identify-

ing assumptions, differential comparison queries will give us

logical constraints that are human interpretable and capture a

set of network traces as opposed to individual network traces

that a tool like CCACmight generate.

In this paper we provide preliminary results for solving

the CCA synthesis query. We believe our approach can be

Automating network heuristic design and analysis HotNets’22, November 14–15, 2022, Austin, TX, USA

Generator

Verifier

𝑋 =∅

A∗
Sat

𝜏∗

Sat

Unsat

No solution

Unsat

SolutionA∗

Figure 1: CEGIS loop (figure adapted from [1]).

generalized for identifying assumptions and performing dif-

ferential comparison (§4.1). We also see this as an important

step towards automated reasoning for other domains (§5).

3 DESIGN SKETCH
Wemodel the queries we want to answer as ∃∀ logical formu-

las. Formulas with quantifiers are typically harder to solve

than quantifier-free formulas (∃∀ formulas are in Σ2

𝑝 complex-

ity class, while quantifier-free formulas are in NP). There are

multiple techniques in the formal methods literature to solve

such formulas [20, 30, 55–57]manyofwhich are implemented

by solvers for quantified formulas (e.g., Z3 [19], CVC5 [9]), but

they are often slow out-of-the-box [10].We explore the use of

counterexample guided inductive synthesis (CEGIS) [1, 61]

framework as it allows incorporating domain specific insights

to speed up formula solving.

Primer on CEGIS. CEGIS is an iterative approach involving
interactions between a generator and a verifier. It takes as

input a formula of the form ∃A .∀𝜏 .𝜎 (A,𝜏), where 𝜎 (A,𝜏) is
a quantifier free formula. Then, the generator tries to synthe-

size a candidate solutionA∗, and the verifier tries to find a
counterexample 𝜏∗ that breaks the solution. In our running
example of CCA synthesis,A is the CCAwe hope to find, 𝜏 is

a network trace, and the specification 𝜎 encodes whether the

trace𝜏 is realistic under theCCAA andwhether𝜏 satisfies the

desirable properties. The generator findsA in a search space

typically defined using a template with parameters or holes.

The generator assigns values to the parameters to obtain a

concrete CCA. For instance, a filled template may specify

how the CCA’s congestion window (cwnd) is updated based

on historical cwnd, packet acknowledgements (ACKs), and

events such as losses or timeouts.

CEGISWorkflow (Figure 1). The generator proposes a can-
didate CCA,A∗. Initially, this is an arbitrary choice. The veri-
fier checkswhether our specification can be violated by check-

ing if¬𝜎 (A∗,𝜏) is satisfiable. If so, theverifierproducesacoun-
terexample trace 𝜏∗ that violates the specification. We add 𝜏∗

to the set of counterexamples,𝑋 . Now, the generator searches

for a CCA that can ensure the specification under all coun-

terexamples till now, i.e., it findsA such that∀𝜏∗ ∈𝑋 .𝜎 (A,𝜏∗)
is true. Note, the generator only checks over the finite (and

hopefully, small) set 𝑋 . This loop ends in two cases, (1) the

verifier fails to find a counterexample, proving that under the

latestA∗, the specification can’t be violated, thusA∗ is a so-
lution to the ∃∀ query, or (2) the generator fails to find a CCA,

this means that there is no solution to the query in the search

space forA. Hence this method is both sound and complete.

The verifier and generator can be implemented using dif-

ferent techniques including machine-learning [38], and con-

straint solving [1, 26], or amix of both [25].We use constraint

solvers as their solutions are more interpretable and we can

logically encode our requirements.

Challenges. There are several challenges in applying CEGIS
that can be categorized into (1) encoding and (2) scalability.

Encoding. It is non-trivial to precisely specify the CCA tem-

plate and desired properties. Ideally, we want a template that

is expressive enough to capture a variety of actions that CCAs

can take, at the same time, we want to restrict the template

to keep our search tractable. Likewise, we want our desired

properties to be strong enough to synthesize potentially novel

CCAs, but keep them relaxed enough so that solutions to our

queries exist.

Scalability. The CEGIS approach can be slow in general.

The generator/verifier formulation can often involve non-

linearities consuming significant time per iteration. CEGIS

loop is alsoprone toenumerating thegenerator’s entire search

space through many iterations of the loop since each coun-

terexample eliminates few candidate solutions [1, 59].

We describe howwe use CEGIS to solve the CCA synthesis

query, and our learnings to overcome above challenges.

3.1 Prototype: CCmatic
Recall, wemodel the CCA synthesis query as ∃A .∀𝜏 .𝜎 (A,𝜏).
The CCA,A, controls when packets are sent in response to

previousnetworkbehavior.The trace𝜏 specifieswhenpackets

are dropped or delayed. Wemodel 𝜎 as:

𝜎 (A,𝜏) := 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 (A,𝜏) =⇒ 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (A,𝜏) (i)
i.e., all feasible traces must satisfy our desired properties (e.g.,

“high utilization AND low delay”). Here, feasiblity means two

things, (1) packets in the trace should be sent according to the

CCA, (2) packet should be ACKed or dropped as allowed by

a realistic network. To encode what traces are 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 and

whether they satisfy our 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 properties, we use the en-

coding proposed by CCAC [6]. CCACmodels the network en-

vironment using Network Calculus [41], and captures a wide

variety of sub-RTT phenomena that real networks exhibit.

We encode the generator as a constraint satisfaction prob-

lem in the theory of quantifier-free linear real arithmetic

(QF-LRA) [40], and use Z3 [19] to solve it. We directly use

CCAC [6] as the verifier.

3.1.1 Encoding challenges. Template forCCA.CCAs are
defined by how they handle different network events such as

ACKs, delays, and losses. As an initial attempt, we consider

lossless networkswith infinite buffers. TheCCA template sets

the cwnd every round trip time (RTT) in response to ACKs.

Prior work has shown CCAs operating on summary metrics

every RTT to be as good as fine-grained, per-ACK control [6,

49]. This fitswellwithCCAC’s abstractionof available control

HotNets’22, November 14–15, 2022, Austin, TX, USA A. Agarwal, V. Arun, et al.

actions and response granularity, allowing us to easily encode

the templated candidate solution into CCAC’s formulation.

CCAscanalsodefine their ownstate abouthistorical events.

Allowing such state in the template significantly increases

the size and complexity (non-linearity) of the encoding con-

straints and slowsdownsynthesis time. Instead,wegivedirect

access to a small period of historical information to the CCA.

In summary, our template is:

𝑐𝑤𝑛𝑑 (𝑡)=
ℎ∑︁
𝑖=1

(
𝛼𝑖𝑐𝑤𝑛𝑑 (𝑡−𝑖)+𝛽𝑖𝑎𝑐𝑘 (𝑡−𝑖)

)
+𝛾 (ii)

where, 𝛼𝑖 , 𝛽𝑖 , and𝛾 are coefficients (holes or parameters) syn-

thesizedby thegenerator,𝑐𝑤𝑛𝑑 (𝑡) is thecwndat time𝑡 ,𝑎𝑐𝑘 (𝑡)
is the cumulative bytes ACKed by time 𝑡 , andℎ is the number

of historical RTTs that the CCA can query statistics about.

The time indices (𝑡), (𝑡−𝑖) are in units of propagation delay.
The user can experiment with different templates (see §4.1)

to explore the design space.

Steady state behavior and desired properties. Constraint
solvers work best with finite traces and it is hard to directly

reason about steady state behavior. CCAC tackles this by let-

ting the constraint solver pick arbitrary initial values for cwnd

and queue size, effectively treating the time before 𝑡 = 0 to

have had arbitrary evolution of the packet delays, drops, and

other network behavior.

This creates an issue—a desired property (e.g. “high utiliza-

tionANDboundeddelay”) canbeviolated in afinite tracewith

arbitrary initial conditions. For instance, at the start of a flow,

the CCA needs to ramp up before it can achieve high utiliza-

tion. Likewise, the trace may start with a large initial queue

that can cause excessive delays. In such situations, the best

anyCCAcando is to increase or decrease the cwnd in the right

direction.Thus,we relax theoriginal desiredpropertyas: “(the

CCAshouldhaveahighutilizationORincrease its cwnd)AND

(it should maintain a small queue OR reduce its cwnd)”. If this

property is true,mathematical induction proves that in a long-

running trace, the synthesized CCA either achieves our origi-

nal desired properties directly, or moves in a direction to real-

ize our original desired properties. Specifically, the encoding

we use is 𝑎𝑐𝑘 (𝑇)−𝑎𝑐𝑘 (0) ≥ thresh𝑈 ∗𝐶 ∗𝑇 (high utilization),

𝑐𝑤𝑛𝑑 (𝑇)>𝑐𝑤𝑛𝑑 (0) (increase cwnd),𝑐𝑤𝑛𝑑 (𝑇)<𝑐𝑤𝑛𝑑 (0) (de-
crease cwnd), ∀𝑡 .𝑞𝑢𝑒𝑢𝑒 (𝑡) ≤ thresh𝐷 , where𝑇 is the duration

of CCAC’s trace and𝐶 is the link rate.We can vary the desired

utilization (thresh𝑈) and delay thresholds (thresh𝐷) (see §4).

Note, a finite trace in CCAC has fixed average link rate, we
incorporate variable link rates using CCAC’s jitter term and

mathematical induction (as was done in CCAC [6]).

Putting it all together. To summarize, we first define a tem-

plate of what the CCAs look like. The generator picks a CCA

from this template. The verifier either certifies that this CCA

satisfies thedesiredproperties orproduces a concretenetwork

trace that “breaks” the CCA. The generator produces another

CCA that is not broken by any of the verifier-produced traces

thus far until either a solution is found or the generator proves

that none of the CCAs specified by its template can work.

3.1.2 Scalability challenges. The speed of the CEGIS loop
is affected by (1) time per iteration, and (2) number of itera-

tions. We reduce both these factors to improve solving time.

Time per iteration. The generator formulation has non-

linear constraints. These mainly involve the product between

two generator variables, one of which is a coefficient variable.

Specifically, the cwnd function (Equation ii) involves product
between old 𝑐𝑤𝑛𝑑 and a coefficient. The old cwnd in turn

depends on coefficients.We restrict coefficients to take values

fromadiscrete set. This allowsus to convert the product terms

into linear terms using “if then else” constraints. We replace

the product term 𝑣∗𝑢 as

∑
𝑎∈𝐴𝑖𝑡𝑒 (𝑣 ==𝑎,𝑎∗𝑢,0)where𝐴 is the

set of possible values for 𝑣 and 𝑖𝑡𝑒 (𝑐,𝑡𝑒𝑥𝑝𝑟,𝑓 𝑒𝑥𝑝𝑟) evaluates
to 𝑡𝑒𝑥𝑝𝑟 if condition 𝑐 is true and 𝑓 𝑒𝑥𝑝𝑟 otherwise.

Number of iterations. Each counterexample might only

eliminate few candidate solutions in CEGIS. We reduce the

iterations by (1) encoding more information about why a par-

ticular candidate CCA did not work, allowing us to prune a

range of candidate CCAs (range pruning), and (2) producing

network traces that are likely to break the most number of

candidate CCAs (worst-case counterexample).

Problem. The generator tries to find a CCA,A, such that

∀𝜏∗ ∈ 𝑋 .𝜎 (A, 𝜏∗). Recall, 𝜎 (A, 𝜏∗) is 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 (A, 𝜏∗) =⇒
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (A,𝜏∗). To satisfy 𝜎 the generator can, (1) make

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (A,𝜏∗) true, or (2) make 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 (A,𝜏∗) false. The lat-
ter is easy. The generator can simply tweak theCCA so it has a

different behavior than any trace in𝑋 . This forces the verifier

to produce a new trace for each slight variation of the CCA

which is inefficient (§4 shows the number of iterations for var-

iousmethods). This is a commonproblemwithCEGIS [59, 60].

Range Pruning. The problem is that each trace in 𝑋 elim-

inates exactly one CCA behavior. Our solution is for each

trace to eliminate a range of behaviors, whichmakes 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒

harder to falsify with trivial tweaks. Thus the generator will

spend more iterations satisfying 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 .

For completeness we mention howwemap an exact trace

produced by CCAC to a range of possible CCA behaviors. We

omit detailedderivationdue to space limitations.According to

notation used in the CCAC paper [6], the range of CCAs for a

trace is such that cumulative bytes sent by theCCA (𝐴𝑡) lies in

the interval [𝑆𝑡 ,∞] if𝑊𝑡 =𝑊𝑡−1 and interval [𝑆𝑡 ,𝐶𝑡−𝑊𝑡] other-
wise. These bounds can be derived by simple algebraic manip-

ulation of the constraints in the CCAC paper. Here 𝑆𝑡 and𝑊𝑡

are produced by the verifier. If the corresponding𝐴𝑡 produced

by the generated CCA lies within this range, 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 is true.

Worst-case counterexample. We can further improve the

range of CCAs pruned. The range is specified using an upper

and lower bound, e.g., [𝑆𝑡 ,𝐶𝑡 −𝑊𝑡]. If the upper and lower

bounds are close to each other, then few CCAs are captured

by the trace. Tomaximise the range of CCAs captured, we ask

the verifier to find a trace that maximizes the minimum range

Automating network heuristic design and analysis HotNets’22, November 14–15, 2022, Austin, TX, USA

for any timestep, i.e., find a trace that maximizes𝑚𝑖𝑛𝑡 (𝑢𝑡−𝑙𝑡)
where [𝑙𝑡 ,𝑢𝑡] is the range for cwnd at time t in the trace.

Wemaximize using binary search. This involves calling the

verifier multiple times in a single CEGIS iteration. For us, ver-

ifier calls are typically fast. Hence, the reduction in iterations

makes up for extra time spent in verifier calls (§4).

For intuition, consider that most candidate CCAs will not

work even on ideal links. The verifier has to do very little

to break them. By asking it to maximize the range of CCAs

eliminated, we can quickly get to the interesting candidate

CCAs that are harder to break.

Our optimizations do not violate soundness or complete-

ness of the logic, i.e., the solution set does not change on

adding the range pruning and worst-case counterexample op-

timizations. We merely avoid otherwise redundant iterations.

Further,whilewedescribedouroptimizations in thecontextof

CCA synthesis, these optimizations havemathematical equiv-

alents and can be applied in a domain agnostic manner. For

instance, range pruning is similar to variable movement [54]

or adding existential quantifiers for dependent inputs [34, 59].

4 RESULTS
We study the solutions produced CCmatic, and solving time.

Methodology. We ask CCmatic to synthesize CCAs that

achieve high utilization and bounded delay in steady state in

a lossless network. We consider two different search spaces,

(1) without access to historical cwnd (i.e., coefficient of cwnd,
𝛽𝑖 , is fixed to 0 for all 𝑖), and (2) with access to historical cwnd.
We consider two domains for the coefficients and constants:

(1) small: {−1,0,1}, and (2) large: {−2,−3/2,−1...,2} or { 𝑖
2
: |𝑖 | ≤

4∧𝑖 ∈ Z}. The small domain restricts to additive responses,

while the large domain includes multiplicative responses. We

explore solutions that use up to 3 RTTs of historical informa-

tion (by settingℎ=3+1=4). We let CCAC jitter each packet

up to 1×RTT. We set requirements as “≥ 50% utilization AND

≤ 4×RTTdelay”, and later vary these thresholds. CCAC found

traceswhereBBR [15],Copa [7] achieve arbitrarily lowutiliza-

tion, so we start with 50% utilization as a reasonable goal [6].

SynthesizedCCAs.Oneof thesolutionswefindis:𝑐𝑤𝑛𝑑 (𝑡)=
𝑎𝑐𝑘 (𝑡 − 1) −𝑎𝑐𝑘 (𝑡 − 3) + 1. This CCA, called RoCC, was re-

cently proposed [24, 63]. On each RTT, it sets cwnd as bytes

acknowledged in last 2 RTTs plus a small additive increment.

On an ideal link with constant rate, RoCC converges to a

queue of BDP +MSS (bandwidth-delay product + maximum

segment size) bytes. In the CCACmodel, for the same choice

of parameters we use in this paper (i.e., jitter = 1×RTT), if this
additional queuing is not present we risk getting arbitrarily

low utilization [5]. An explanation for why this simple rule

works is available [63].

Extensions.We ask CCmatic to produce all possible solu-

tions, implying that there are no other solutions in our search

space apart from those produced by CCmatic. In the search

space without historical cwnd, in the large domain space, we

find a total of 12 CCAs that meet our requirements. This is

Params Domain Search Baseline RP RP+WCE

size # Itr Time # Itr Time # Itr Time

No cwnd Small 3
5

100 3m 30 30s 7 3s

No cwnd Large 9
5

DNF DNF 60 1m 50 1m

cwnd Small 3
9

DNF DNF 100 9m 50 30s

cwnd Large 9
9

DNF DNF 360 32h 80 45m

Table 1: Time to synthesize first solution. DNF: did not
finish within a week, # Itr: number of iterations, RP:
range pruning,WCE:worst-case counterexample, (h,m,
s): (hours,minutes, seconds). # Itr and time are rounded.

an exhaustive set out of 9
5
candidate solutions in the search

space. 9 possible values for each decision variable, and 5 vari-

ables (4 coefficients and 1 constant). The 12 synthesized CCAs

use different amount of historical knowledge. Six of them use

information about last 2 RTTs, and other six use last 3 RTTs.

All these 12 CCAs are minor variations of RoCC, e.g.,

𝑐𝑤𝑛𝑑 (𝑡)= 3

2

𝑎𝑐𝑘 (𝑡−1)− 1
2

𝑎𝑐𝑘 (𝑡−2)−𝑎𝑐𝑘 (𝑡−3) (iii)

An interestingobservation ishowthesolutionspacechanges

aswechange theutilization anddelay thresholds.At≤ 4×RTT
delay, if we require CCAs to have ≥ 65% utilization, only 2

CCAs remain. With ≥ 70% utilization, only 1 CCA remains

(Equation iii). At ≥ 50% utilization, we get 245 solutions with

≤ 8×RTT delay, 9 solutions with ≤ 3.6×RTT delay and no

possible solution with ≤ 3×RTT delay.

Scalability. Table 1 shows improvement in synthesis time

from various optimizations. All runs use the encoding tech-

niquesdescribed in§3.1.1, theyonlydiffer in theoptimizations

described in §3.1.2.We terminate the CEGIS loop after finding

the first solution. All runs were done on server machine with

Intel Xeon Gold 6226R CPU (32 physical cores) and 256 GB

RAM using Z3 version 4.8.17.0. CCmatic uses only 1 core at

a time.

Our optimizations improve synthesis time by at least 60×.
The optimizations are essential for applying our approach as

the loop does not converge even after a week of running in

many cases with the baseline. Further, the baseline is even

slower than a brute-force search (due to generator overheads).

The complexity of verifier formulation is fixed across itera-

tions, unlike the generator that gets more constraints in each

iteration. The verifier typically takes≈0.5s to compute a coun-

terexample.Abrute force searchwhere theverifier is called for

each candidate solution over a search spacewith size 3
5
would

take ≈ 120s, while the baseline takes ≈ 180𝑠 (3m in Table 1).

However, such brute force would take more than 6 core ×
years of computing time for a search space of size 9

9
, whereas

our approach can find a solution in 45m using a single core.

4.1 Next steps
We considered CCA synthesis with lossless networks, and uti-

lization/delay objectives. We discuss next steps in expanding

to other environments, objectives, and queries.

HotNets’22, November 14–15, 2022, Austin, TX, USA A. Agarwal, V. Arun, et al.

Environment and objectives. For lossless networks, a sim-

ple CCA template sufficed. This template may not suffice

for lossy networks and/or fairness/co-existence objectives.

A natural fix is to encode cwnd functions with conditionals,
i.e., if 𝑐𝑜𝑛𝑑 then 𝑐𝑤𝑛𝑑←𝑒𝑥𝑝𝑟1 else 𝑐𝑤𝑛𝑑←𝑒𝑥𝑝𝑟2, where

𝑐𝑜𝑛𝑑 , 𝑒𝑥𝑝𝑟1, and 𝑒𝑥𝑝𝑟2 are decided by the generator (similar

to Equation ii). This template expresses traditional CCAs,

e.g., for AIMD [16], 𝑐𝑜𝑛𝑑 is loss detected, 𝑒𝑥𝑝𝑟1 is multiplica-

tive decrease, and 𝑒𝑥𝑝𝑟2 is additive increments. This template

substantially increases our search space size. We envision

synthesizing subsets of the expressions at a time instead of

all at once, and/or have coefficients for known good signals

instead of having coefficients for each observable quantity.

We hope to use CCmatic to solve open problems. Recent

work [5] showed that network delays can cause competing

flows to starve for many known CCAs including BBR [15],

Cubic [35], and PCC [22, 48]. It is unknown if a CCA outside

this class can avoid starvation.

Otherqueries. In §2,we discuss identifying assumptions and

differential comparison. Both find an assumption and require

describing a template of an assumption. A simple template

could just be a set of parameterized inequalities (similar to

[40]). However, it is challenging to define the specification

𝜎 . Say we require an assumption such that “a trace satisfies

desired properties if and only if the trace satisfies the assump-

tion” (from §2). It might be too harsh to synthesize an assump-

tion that is both necessary and sufficient. Such an assumption

maynot evenexist ingeneral, let alone inour search space. Ide-

ally,wewant theweakest sufficientassumption. Simplyquery-

ing for a sufficient assumption causes the CEGIS loop to triv-

ially output “False”, since the assumption “False” satisfies the

sufficiency requirement (i.e., the if part). To solve this, we are
exploring three approaches: (1) techniques like MaxSAT [8]

to define the weakest sufficient assumption, (2) re-defining

our template as feasible actions that the network can take in-

stead of constraints that the trace satisfies, (3) weakening the

necessary and sufficient requirement, e.g., “if trace satisfies

assumption then utilization ≥ 70% else utilization ≤ 50%.”

5 GENERALIZING TOOTHERDOMAINS
We describe what would it take to apply our approach to a

new domain, then for each domain we describe why auto-

mated reasoning is a good fit, what (open) questions in those

domains could fit within our framework, and any unique

domain-specific challenges we anticipate.

The CEGIS approach requires a verifier. For congestion

control, we were able to use prior work (CCAC [6]). Build-

ing verifiers is challenging as verifiers need to capture di-

verse/realistic behaviorswhile avoiding adversarial behaviors

that no heuristics can handle. CCACdoes this by constraining

when packets can be delayed/dropped. This requires signif-

icant domain expertise and it is unclear if such constraints

are strictly necessary. We believe the CEGIS loop can help

with tuning verifiers. We can synthesize verifier constraints

by asking “∃ constraints on system parameters such that ∀
traces that satisfy these constraints, at least one knownheuris-

tic achieves its desired goals”. The intuition is that different

heuristics are designed for different realistic environments.

The union of traces over all heuristics captures a broad set of

behaviors that realistic systems can exhibit.

ABR.ABR shares similar environments as CCAs, e.g., packet

drops, delays, and jitter, but with different objectives, e.g.,

video quality, playback latency, playback stalls. We were able

to reuse CCAC’s environment model and encode video qual-

ity/stall in terms of playback buffer to build a verifier for

ABR.We see this as positive evidence that future work could

use automation to distill insights and synthesize robust-by-

construction ABR algorithms. Automation could help rapidly

specialize offline, live and real-time video streaming. It could

further help co-design ABRwith congestion control [29], loss

recovery mechanisms that mix re-transmission with forward

error correction [36], and frame skipping [64].

Scheduling.Schedulingalsohas a combinatorial explosion in

environments (or workloads), objectives, and system interac-

tions. Scheduling decisions depend on factors like preemption

and migration overheads, resource constraints, privacy and

service-level agreements. As a result, schedulers have been

specialized for different workloads and requirements, e.g.,

data analytics [21, 71], deep learning [33, 43, 51, 68], and short

network requests [17, 50, 53]. It is unclear if existing sched-

ulers meet performance bounds. For instance, prior works ex-

posemany algorithmic bugs in existing schedulers [42].Work

stealing, to balance load across cores, is a rare exceptionwhere

we have practically relevant theoretical guarantees [46, 47].

A challenge we anticipate is building an abstraction for

the environment. In congestion control/ABR, Network Cal-

culus allowed modeling a variety of sub-RTT phenomena

(e.g., ACK aggregation, jitter, token-bucket filters) using a

simple packet delay abstraction. We would need a similar

way to logically represent environments in scheduling, e.g.,

placement/locality preferences (data/GPU/NUMA), job/task

priorities, communication delays, stragglers.

6 CONCLUSION
We build CCmatic as preliminary evidence for feasibility

of modeling and formally reasoning about heuristics in a

tractable manner. While we show this in the context of CCA

synthesis, we believe our approach can bring clarity to other

questions within congestion control and other domains.

Acknowledgements.Wewould like to thank anonymous

reviewers and NSF grants #2212102, and #2212390.

Automating network heuristic design and analysis HotNets’22, November 14–15, 2022, Austin, TX, USA

REFERENCES
[1] Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and

Elizabeth Polgreen. 2018. Counterexample Guided Inductive Synthesis

Modulo Theories. In Computer Aided Verification, Hana Chockler and
GeorgWeissenbacher (Eds.). Springer International Publishing, Cham,

270–288.

[2] Susanne Albers, Lene M Favrholdt, and Oliver Giel. 2005. On paging

with locality of reference. J. Comput. System Sci. 70, 2 (2005), 145–175.
[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and

Murari Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings
of the ACM SIGCOMM 2010 Conference (SIGCOMM ’10). Asso-

ciation for Computing Machinery, New York, NY, USA, 63–74.

https://doi.org/10.1145/1851182.1851192

[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti,

Nick McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pfabric:

Minimal near-optimal datacenter transport. ACM SIGCOMMComputer
Communication Review 43, 4 (2013), 435–446.

[5] Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. 2022.

Starvation in End-to-End Congestion Control. In Proceedings of the
2022 ACM SIGCOMM 2022 Conference (SIGCOMM ’22). Association for
Computing Machinery, Amsterdam, Netherlands.

[6] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad

Alizadeh, and Hari Balakrishnan. 2021. Toward Formally Verifying

CongestionControl Behavior. In Proceedings of the 2021ACMSIGCOMM
2021Conference (SIGCOMM ’21). Association forComputingMachinery,

New York, NY, USA, 1–16. https://doi.org/10.1145/3452296.3472912

[7] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical

Delay-Based Congestion Control for the Internet. In 15th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 18). USENIX Association, Renton, WA, 329–342.

https://www.usenix.org/conference/nsdi18/presentation/arun

[8] Fahiem Bacchus, Matti Järvisalo, and RubenMartins. 2021. Maximum

Satisfiabiliy. In Handbook of Satisfiability - Second Edition, Armin Biere,

Marijn Heule, Hans van Maaren, and TobyWalsh (Eds.). Frontiers in

Artificial Intelligence and Applications, Vol. 336. IOS Press, 929–991.

https://doi.org/10.3233/FAIA201008

[9] Haniel Barbosa, ClarkW. Barrett, Martin Brain, Gereon Kremer, Hanna

Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed,

Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew

Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A

Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I (Lecture Notes in Computer Science),
Dana Fisman and Grigore Rosu (Eds.), Vol. 13243. Springer, 415–442.

https://doi.org/10.1007/978-3-030-99524-9_24

[10] Nils Becker, Peter Müller, and Alexander J. Summers. 2019. The

Axiom Profiler: Understanding and Debugging SMT Quantifier

Instantiations. In Tools and Algorithms for the Construction and
Analysis of Systems: 25th International Conference, TACAS 2019, Held
as Part of the European Joint Conferences on Theory and Practice
of Softwawastre, ETAPS 2019, Prague, Czech Republic, April 6–11,
2019, Proceedings, Part I. Springer-Verlag, Berlin, Heidelberg, 99–116.
https://doi.org/10.1007/978-3-030-17462-0_6

[11] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling

Multithreaded Computations by Work Stealing. J. ACM 46, 5 (sep

1999), 720–748. https://doi.org/10.1145/324133.324234

[12] L.S. Brakmo and L.L. Peterson. 1995. TCP Vegas: end to end congestion

avoidance on a global Internet. IEEE Journal on Selected Areas in Com-
munications 13, 8 (1995), 1465–1480. https://doi.org/10.1109/49.464716

[13] Carlo Caini and Rosario Firrincieli. 2004. TCP Hybla: A TCP Enhance-

ment for Heterogeneous Networks. Int. J. Satell. Commun. Netw. 22,
5 (sep 2004), 547–566. https://doi.org/10.1002/sat.799

[14] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis,

Barath Raghavan, Nandita Dukkipati, Hsiao-keng Jerry Chu, Andreas

Terzis, and Tom Herbert. 2013. packetdrill: Scriptable network stack

testing, from sockets to packets. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13). 213–218.

[15] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas

Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Conges-

tion Control. ACM Queue 14, September-October (2016), 20 – 53.

http://queue.acm.org/detail.cfm?id=3022184

[16] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the increase and

decrease algorithms for congestion avoidance in computer net-

works. Computer Networks and ISDN Systems 17, 1 (1989), 1–14.

https://doi.org/10.1016/0169-7552(89)90019-6

[17] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Al-

izadeh, and AdamBelay. 2020. Overload Control for {𝜇s-scale}{RPCs}
with Breakwater. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 299–314.

[18] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: A networking

abstraction for cluster applications. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks. 31–36.

[19] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 337–340.

[20] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2007. Ef-

ficient E-Matching for SMT Solvers. In Automated Deduction -
CADE-21, 21st International Conference on Automated Deduction,
Bremen, Germany, July 17-20, 2007, Proceedings (Lecture Notes in
Computer Science), Frank Pfenning (Ed.), Vol. 4603. Springer, 183–198.
https://doi.org/10.1007/978-3-540-73595-3_13

[21] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data

processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[22] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,

Brighten Godfrey, and Michael Schapira. 2018. {PCC} Vivace:{Online-
Learning} Congestion Control. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). 343–356.

[23] Nandita Dukkipati and Nick McKeown. 2006. Why flow-completion

time is the right metric for congestion control. ACM SIGCOMM
Computer Communication Review 36, 1 (2006), 59–62.

[24] facebookincubator. 2022. mvfst. https://github.com/facebookincubator/

mvfst/blob/94722103c32f11b589f9e0e2165a6b54dbda16d7/

quic/congestion_control/Copa2.cpp#L195. (June 2022).

https://github.com/facebookincubator/mvfst/blob/

94722103c32f11b589f9e0e2165a6b54dbda16d7/quic/congestion_

control/Copa2.cpp#L195 [Online; accessed 20. Jun. 2022].

[25] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program

Synthesis Using Conflict-Driven Learning. SIGPLAN Not. 53, 4 (jun
2018), 420–435. https://doi.org/10.1145/3296979.3192382

[26] Margarida Ferreira, Akshay Narayan, Inês Lynce, RubenMartins, and

Justine Sherry. 2021. Counterfeiting Congestion Control Algorithms.

In Proceedings of the Twentieth ACMWorkshop on Hot Topics in Networks
(HotNets ’21). Association for Computing Machinery, New York, NY,

USA, 132–139. https://doi.org/10.1145/3484266.3487381

[27] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. 2000.

Equation-based congestion control for unicast applications. ACM
SIGCOMMComputer Communication Review 30, 4 (2000), 43–56.

[28] Lance Fortnow. 2022. Fifty years of P vs. NP and the possi-

bility of the impossible. Commun. ACM 65, 1 (2022), 76–85.

https://doi.org/10.1145/3460351

[29] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S.

Wahby, and KeithWinstein. 2018. Salsify: Low-Latency Network Video

through Tighter Integration between a Video Codec and a Transport

Protocol. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). USENIX Association, Renton, WA, 267–282.

https://www.usenix.org/conference/nsdi18/presentation/fouladi

https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/3452296.3472912
https://www.usenix.org/conference/nsdi18/presentation/arun
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1145/324133.324234
https://doi.org/10.1109/49.464716
https://doi.org/10.1002/sat.799
http://queue.acm.org/detail.cfm?id=3022184
https://doi.org/10.1016/0169-7552(89)90019-6
https://doi.org/10.1007/978-3-540-73595-3_13
https://github.com/facebookincubator/mvfst/blob/94722103c32f11b589f9e0e2165a6b54dbda16d7/quic/congestion_control/Copa2.cpp#L195
https://github.com/facebookincubator/mvfst/blob/94722103c32f11b589f9e0e2165a6b54dbda16d7/quic/congestion_control/Copa2.cpp#L195
https://github.com/facebookincubator/mvfst/blob/94722103c32f11b589f9e0e2165a6b54dbda16d7/quic/congestion_control/Copa2.cpp#L195
https://github.com/facebookincubator/mvfst/blob/94722103c32f11b589f9e0e2165a6b54dbda16d7/quic/congestion_control/Copa2.cpp#L195
https://github.com/facebookincubator/mvfst/blob/94722103c32f11b589f9e0e2165a6b54dbda16d7/quic/congestion_control/Copa2.cpp#L195
https://github.com/facebookincubator/mvfst/blob/94722103c32f11b589f9e0e2165a6b54dbda16d7/quic/congestion_control/Copa2.cpp#L195
https://doi.org/10.1145/3296979.3192382
https://doi.org/10.1145/3484266.3487381
https://doi.org/10.1145/3460351
https://www.usenix.org/conference/nsdi18/presentation/fouladi

HotNets’22, November 14–15, 2022, Austin, TX, USA A. Agarwal, V. Arun, et al.

[30] Yeting Ge and Leonardo Mendonça de Moura. 2009. Complete

Instantiation for Quantified Formulas in SatisfiabilibyModulo Theories.

In Computer Aided Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings (Lecture Notes in
Computer Science), Ahmed Bouajjani and OdedMaler (Eds.), Vol. 5643.

Springer, 306–320. https://doi.org/10.1007/978-3-642-02658-4_25

[31] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad

Alizadeh, and Hari Balakrishnan. 2020. ABC: A Simple Ex-

plicit Congestion Controller for Wireless Networks. In 17th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). USENIX Association, Santa Clara, CA, 353–372.

https://www.usenix.org/conference/nsdi20/presentation/goyal

[32] Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana,

Mohammad Alizadeh, and Hari Balakrishnan. 2018. Elasticity Detec-

tion: A Building Block for Internet Congestion Control. arXiv (Feb.

2018). https://doi.org/10.48550/arXiv.1802.08730 arXiv:1802.08730

[33] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu,

Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong

Guo. 2019. Tiresias: A GPU Cluster Manager for Distributed Deep

Learning. In 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). USENIX Association, Boston, MA, 485–500.

https://www.usenix.org/conference/nsdi19/presentation/gu

[34] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam

Venkatesan. 2011. Synthesis of loop-free programs. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June
4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 62–73.

https://doi.org/10.1145/1993498.1993506

[35] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New

TCP-Friendly High-Speed TCP Variant. SIGOPS Oper. Syst. Rev. 42, 5
(jul 2008), 64–74. https://doi.org/10.1145/1400097.1400105

[36] Stefan Holmer, Mikhal Shemer, and Marco Paniconi. 2013. Handling

packet loss inWebRTC. In 2013 IEEE International Conference on Image
Processing. IEEE, 1860–1864.

[37] Samuel Jero, Md Endadul Hoque, David R Choffnes, Alan Mislove,

and Cristina Nita-Rotaru. 2018. Automated Attack Discovery in TCP

Congestion Control Using a Model-guided Approach.. In NDSS.
[38] Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv

Batra, Prateek Jain, and Sumit Gulwani. 2018. Neural-Guided

Deductive Search for Real-Time Program Synthesis from Ex-

amples. In International Conference on Learning Representations.
https://openreview.net/forum?id=rywDjg-RW

[39] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Con-

gestion Control for High Bandwidth-Delay Product Networks.

SIGCOMM Comput. Commun. Rev. 32, 4 (aug 2002), 89–102.

https://doi.org/10.1145/964725.633035

[40] Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc De Raedt. 2018.

Learning SMT(LRA) Constraints Using SMT Solvers. In Proceedings of
the 27th International JointConference onArtificial Intelligence (IJCAI’18).
AAAI Press, 2333–2340. https://doi.org/10.24963/ijcai.2018/323

[41] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network calculus: a
theory of deterministic queuing systems for the internet. Springer.

[42] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien

Quéma, and Alexandra Fedorova. 2016. The Linux scheduler: a decade

of wasted cores. In Proceedings of the Eleventh European Conference on
Computer Systems. 1–16.

[43] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram

Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.

2020. Themis: Fair and Efficient GPU Cluster Scheduling. In 17th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). USENIX Association, Santa Clara, CA, 289–304.

https://www.usenix.org/conference/nsdi20/presentation/mahajan

[44] Hongzi Mao, Ravi Netravali, andMohammad Alizadeh. 2017. Neural

Adaptive Video Streaming with Pensieve. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication

(SIGCOMM ’17). Association for Computing Machinery, New York, NY,

USA, 197–210. https://doi.org/10.1145/3098822.3098843

[45] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott.

1997. The Macroscopic Behavior of the TCP Congestion Avoidance

Algorithm. SIGCOMM Comput. Commun. Rev. 27, 3 (jul 1997), 67–82.
https://doi.org/10.1145/263932.264023

[46] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Rat-

nasamy. 2022. Efficient Scheduling Policies for Microsecond-Scale

Tasks. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 1–18.

https://www.usenix.org/conference/nsdi22/presentation/mcclure

[47] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Rat-

nasamy. 2022. Efficient Scheduling Policies for Microsecond-Scale

Tasks. In 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). USENIX Association, Renton, WA, 1–18.

https://www.usenix.org/conference/nsdi22/presentation/mcclure

[48] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey, and Michael

Schapira. 2020. PCC proteus: Scavenger transport and beyond. In

Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication. 615–631.

[49] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,

Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari

Balakrishnan. 2018. RestructuringEndpointCongestionControl. In Pro-
ceedings of the 2018 Conference of the ACMSpecial Interest Group onData
Communication (SIGCOMM’18). Association forComputingMachinery,

New York, NY, USA, 30–43. https://doi.org/10.1145/3230543.3230553

[50] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. 2019. Shenango: Achieving high {CPU} efficiency

for latency-sensitive datacenter workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 361–378.

[51] Yanghua Peng, Yixin Bao, Yangrui Chen, ChuanWu, and Chuanxiong

Guo. 2018. Optimus:AnEfficientDynamicResource Scheduler forDeep

Learning Clusters. In Proceedings of the Thirteenth EuroSys Conference
(EuroSys ’18). Association for Computing Machinery, New York, NY,

USA, Article 3, 14 pages. https://doi.org/10.1145/3190508.3190517

[52] Adithya Abraham Philip, Ranysha Ware, Rukshani Athapathu,

Justine Sherry, and Vyas Sekar. 2021. Revisiting TCP Congestion

Control Throughput Models & Fairness Properties at Scale. In

Proceedings of the 21st ACM Internet Measurement Conference (IMC ’21).
Association for Computing Machinery, New York, NY, USA, 96–103.

https://doi.org/10.1145/3487552.3487834

[53] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. Zygos:

Achieving low tail latency for microsecond-scale networked tasks.

In Proceedings of the 26th Symposium on Operating Systems Principles.
325–341.

[54] Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant. 2022.

Moving Definition Variables in Quantified Boolean Formulas. In Tools
and Algorithms for the Construction and Analysis of Systems. 28th
International Conference, TACAS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2–7, 2022, Proceedings, Part I. Springer-Verlag, Berlin,
Heidelberg, 462–479. https://doi.org/10.1007/978-3-030-99524-9_26

[55] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli,

and Clark W. Barrett. 2015. Counterexample-Guided Quantifier

Instantiation for Synthesis in SMT. In Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part II (Lecture Notes in Computer Science),
Daniel Kroening and Corina S. Pasareanu (Eds.), Vol. 9207. Springer,

198–216. https://doi.org/10.1007/978-3-319-21668-3_12

[56] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de

Moura. 2014. Finding conflicting instances of quantified formulas

in SMT. In Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, October 21-24, 2014. IEEE, 195–202.
https://doi.org/10.1109/FMCAD.2014.6987613

https://doi.org/10.1007/978-3-642-02658-4_25
https://www.usenix.org/conference/nsdi20/presentation/goyal
https://doi.org/10.48550/arXiv.1802.08730
http://arxiv.org/abs/1802.08730
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1400097.1400105
https://openreview.net/forum?id=rywDjg-RW
https://doi.org/10.1145/964725.633035
https://doi.org/10.24963/ijcai.2018/323
https://www.usenix.org/conference/nsdi20/presentation/mahajan
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/263932.264023
https://www.usenix.org/conference/nsdi22/presentation/mcclure
https://www.usenix.org/conference/nsdi22/presentation/mcclure
https://doi.org/10.1145/3230543.3230553
https://doi.org/10.1145/3190508.3190517
https://doi.org/10.1145/3487552.3487834
https://doi.org/10.1007/978-3-030-99524-9_26
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1109/FMCAD.2014.6987613

Automating network heuristic design and analysis HotNets’22, November 14–15, 2022, Austin, TX, USA

[57] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstic, Morgan

Deters, and ClarkW. Barrett. 2013. Quantifier Instantiation Techniques

for Finite Model Finding in SMT. In Automated Deduction - CADE-24
- 24th International Conference on Automated Deduction, Lake Placid,
NY, USA, June 9-14, 2013. Proceedings (Lecture Notes in Computer
Science), Maria Paola Bonacina (Ed.), Vol. 7898. Springer, 377–391.

https://doi.org/10.1007/978-3-642-38574-2_26

[58] Dario Rossi, Claudio Testa, Silvio Valenti, and Luca Muscariello. 2010.

LEDBAT: TheNewBitTorrent CongestionControl Protocol. In 2010 Pro-
ceedings of 19th International Conference on Computer Communications
and Networks. 1–6. https://doi.org/10.1109/ICCCN.2010.5560080

[59] Rohit Singh, Rishabh Singh, Zhilei Xu, Rebecca Krosnick, and Armando

Solar-Lezama. 2014. Modular Synthesis of Sketches Using Models.

In Verification, Model Checking, and Abstract Interpretation - 15th
International Conference, VMCAI 2014, San Diego, CA, USA, January
19-21, 2014, Proceedings (Lecture Notes in Computer Science), Kenneth L.
McMillan and Xavier Rival (Eds.), Vol. 8318. Springer, 395–414.

https://doi.org/10.1007/978-3-642-54013-4_22

[60] Armando Solar-Lezama. 2021. Lecture 13. https://people.csail.mit.edu/

asolar/SynthesisCourse/Lecture13.htm. (April 2021). [Online; accessed

22. Jun. 2022].

[61] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.

2008. Sketching Concurrent Data Structures. SIGPLAN Not. 43, 6 (jun
2008), 136–148. https://doi.org/10.1145/1379022.1375599

[62] Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. 2021. Model-

Agnostic and Efficient Exploration of Numerical Congestion Control

State Space of Real-World TCP Implementations. IEEE/ACM
Transactions on Networking 29, 5 (2021), 1990–2004.

[63] venkatarun95. 2022. rocc_kernel. https://github.com/venkatarun95/

rocc_kernel. (June 2022). https://github.com/venkatarun95/rocc_

kernel [Online; accessed 20. Jun. 2022].

[64] TingfengWang, Zili Meng, Mingwei Xu, Rui Han, and Honghao Liu.

2021. Enabling high frame-rate UHD real-time communication with

frame-skipping. In Proceedings of the 3rd ACMWorkshop on Hot Topics
in Video Analytics and Intelligent Edges. 19–24.

[65] RanyshaWare, Matthew K. Mukerjee, Srinivasan Seshan, and Justine

Sherry. 2019. Modeling BBR’s Interactionswith Loss-Based Congestion

Control. In Proceedings of the Internet Measurement Conference (IMC
’19). Association for Computing Machinery, New York, NY, USA,

137–143. https://doi.org/10.1145/3355369.3355604

[66] Keith Winstein and Hari Balakrishnan. 2013. TCP Ex Machina:

Computer-Generated Congestion Control. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13).
Association for Computing Machinery, New York, NY, USA, 123–134.

https://doi.org/10.1145/2486001.2486020

[67] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013.

Stochastic Forecasts Achieve High Throughput and Low Delay

over Cellular Networks. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13). USENIX Association,

Lombard, IL, 459–471. https://www.usenix.org/conference/nsdi13/

technical-sessions/presentation/winstein

[68] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian

Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,

Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. 2018.

Gandiva: Introspective Cluster Scheduling for Deep Learning. In

13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association, Carlsbad, CA, 595–610.

https://www.usenix.org/conference/osdi18/presentation/xiao

[69] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James

Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learn-

ing in situ: a randomized experiment in video streaming. In 17th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20). USENIX Association, Santa Clara, CA, 495–511.

https://www.usenix.org/conference/nsdi20/presentation/yan

[70] Francis Y. Yan, JestinMa, Greg D. Hill, Deepti Raghavan, Riad S.Wahby,

PhilipLevis, andKeithWinstein. 2018. Pantheon: the traininggroundfor

Internet congestion-control research. In 2018 USENIX Annual Technical
Conference (USENIXATC18).USENIXAssociation,Boston,MA,731–743.

https://www.usenix.org/conference/atc18/presentation/yan-francis

[71] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, MurphyMcCauly, Michael J Franklin, Scott Shenker, and Ion

Stoica. 2012. Resilient distributed datasets: A {Fault-Tolerant} abstrac-
tion for {In-Memory} cluster computing. In 9th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 12). 15–28.

[72] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian,

and Carmelita Görg. 2015. Adaptive Congestion Control for Unpre-

dictable Cellular Networks. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (SIGCOMM ’15).
Association for Computing Machinery, New York, NY, USA, 509–522.

https://doi.org/10.1145/2785956.2787498

[73] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina

Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel,

Mohamad Haj Yahia, and Ming Zhang. 2015. Congestion Control

for Large-Scale RDMA Deployments. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM ’15). Association for Computing Machinery, New York, NY,

USA, 523–536. https://doi.org/10.1145/2785956.2787484

https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1109/ICCCN.2010.5560080
https://doi.org/10.1007/978-3-642-54013-4_22
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture13.htm
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture13.htm
https://doi.org/10.1145/1379022.1375599
https://github.com/venkatarun95/rocc_kernel
https://github.com/venkatarun95/rocc_kernel
https://github.com/venkatarun95/rocc_kernel
https://github.com/venkatarun95/rocc_kernel
https://doi.org/10.1145/3355369.3355604
https://doi.org/10.1145/2486001.2486020
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winstein
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://doi.org/10.1145/2785956.2787498
https://doi.org/10.1145/2785956.2787484

	Abstract
	1 Introduction
	2 Vision and Scope
	3 Design Sketch
	3.1 Prototype: CCmatic

	4 Results
	4.1 Next steps

	5 Generalizing to Other Domains
	6 Conclusion
	References

