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Abstract
We seek to ease the design of congestion control algorithms

(CCAs) that provably perform well under diverse network
scenarios including, cellular links, policers, token bucket
filters, operating system jitter, etc. Guaranteeing performance
under such conditions is hard as it requires considering
combinatorial possibilities of CCA and network interactions.
We build a framework that allows us to reason about CCAs.
It describes (1) the necessary actions that any performant
CCA must take, and (2) a provably sufficient amount of
information for CCAs to consider when deciding their sending
rate. Combining this framework with techniques in formal
methods, we synthesize CCAs that provably perform across
a diverse set of network conditions. Our methodology also
led us to discover and prove fundamental impossibility results.

1 Introduction
End-to-end congestion control algorithms (CCAs) for the
Internet must operate on varied network paths, each with its
unique combination of physical links (e.g., wired, cellular,
low-latency data center, satellite [3, 14, 15, 31, 57, 61, 63])
and processing elements (e.g., load balancers, schedulers,
NICs, switches, routers). On such paths, CCAs balance often
conflicting objectives like utilization, delay, packet losses,
convergence time, fairness, and flow-completion time.

A robust general-purpose CCA that performs well across
diverse network scenarios has remained elusive. All existing
general-purpose CCAs (e.g., Cubic, BBR, PCC, Copa) per-
form poorly in some practical scenario [6, 7, 17, 20, 60] (§2).

We report on our attempt at an ambitious task: “to design
CCAs that can provably meet performance objectives on a
broad set of network paths”. Unsurprisingly, this was hard.
Our initial optimism came from recent work, CCAC [7] that
uses computational methods to search for network behaviors
that break a given CCA. We thought we could simply iterate
over CCA design by asking CCAC if it violates a performance
property, and if so, fix the CCA and repeat the process.

This was not as straightforward. While CCAC describes
a scenario where a given CCA breaks, it does not tell us how
to fix the CCA, i.e., (Q1) how should it change its sending rate
choices, and in doing so (Q2) what signals/statistics might it
consider. CCAC also does not tell us (Q3) if the performance
property is even achievable by some CCA.

To answer these questions, we examined the CCAs
developed over the last few decades. They consider numerous

statistics to infer congestion (e.g., derivatives, integrals,
exponentially weighted moving averages of loss/delay
signals). There is no consensus on what statistics a CCA
should maintain. On closer observation, we find that the
statistics maintained by CCAs (implicitly) describe latent
properties of the path that the CCA is running on. For instance,
ssthresh in Reno/New Reno [33, 34] estimates a lower bound
on the BDP of the network; BBR [15] explicitly maintains
estimates of bandwidth and propagation delay.

We formalize this intuition by defining belief set as the set of
paths (described using parameters like link rate, propagation
delay, and buffer size) that the CCA believes it could be
running on and the possible instantaneous state(s) of each
path (e.g., packets in queue/on the wire). Given a model of
the network (e.g., CCAC [7]), we give a canonical way to
compute the belief set as the exhaustive set of paths and states
that can explain the history of observations made by the CCA.

The belief set (or beliefs) gives us a way to model all CCAs
and formally reason about them. First, we show that it is neces-
sary for any performant CCA to shrink the size of the belief set,
i.e., reduce uncertainty in the possible paths it could be running
on, e.g., probe to check if the link rate could be higher. Second,
we formally prove that the belief set is a sufficient set of
statistics for a performant CCA to consider, i.e., if a CCA can
ensure a certain performance property, then a “belief-based
CCA” can also ensure it, where a belief-based CCA is one
whose sending rate is a pure function of the belief set.

Beliefs help answer the above questions (Q1-3) and enable
two key results. First, by combining beliefs with CCAC, we
built a tool, CCmatic. It uses program synthesis techniques
to systematically solve the search problem: “find a CCA in
a search space that ensures given performance properties over
all specified network paths or scenarios”. Sufficiency of beliefs
allows us to define an exhaustive and tractable search space,
necessity of beliefs allows us to define performance properties,
and techniques from CCAC allow us to define the network
paths. CCmatic synthesized CCAs that guarantee performance
across all paths described by models like CCAC, where
existing CCAs struggle to even guarantee 1% utilization [7].
Despite being designed for theoretical “worst-case” links, the
synthesized CCAs outperform or match existing CCAs on em-
pirical links that resemble “average-case” networks. By design,
the synthesized CCAs are short, modular, human-interpretable,
and come with proven performance guarantees.

Second, experimenting with CCmatic, it sometimes reported



that no CCA in the search space could meet the performance
property, hinting that perhaps our performance property cannot
be achieved. Despite the sufficiency of the belief set, this is not
a definitive proof because CCmatic only explores a subset of
belief-based CCAs due to computational limits. Nevertheless,
using the sufficiency and necessity properties of the belief set,
we prove a previously unknown fundamental tradeoff between
loss and convergence time on shallow buffered networks.
Intuitively, the combination of short buffers and jitter creates
uncertainty in delay measurements, forcing CCAs to rely on
loss-based signals. If CCAs probe for bandwidth aggressively,
they converge faster but risk losses. If they probe conserva-
tively, they mitigate losses but converge slowly. We quantify
this relationship and synthesize CCAs that achieve different
points on the Pareto frontier. Note, while this tradeoff may
seem intuitive, formalizing it requires careful treatment (§6.2).

Our contributions are: (1) the belief framework to reason
about congestion control (§4), (2) CCmatic, a tool to
synthesize CCAs (§5), (3) the CCAs synthesized by CCmatic,
proofs about their performance properties, and their empirical
evaluation (§6.1, §6.3, §6.4), and (4) the impossibility
theorems (§6.2). Note, to provide provable performance
guarantees, we make several assumptions which we hope to
relax in future work (§2, §8). In particular, we do not formally
study fairness between multiple flows.

2 Motivation
We motivate beliefs using an example and outline our goals.

Belief set example. Consider a hypothetical CCA that
knows it is running on a simple link with constant round-trip
propagation delay Rm = 100 ms, an infinite buffer β=∞, and a
constant, but unknown, bandwidth C MBps. Initially, the CCA
could be running on any path on the Internet, i.e., C could be
any non-zero value (e.g., 100 MBps). I.e., the CCA believes
C∈(0,∞) MBps. Say the CCA has been sending at rate λ=10
MBps, and observes that all packets are ACKed 100 ms after
transmission (i.e., RTT = Rm). Such RTTs could be produced
by any path with C≥10 MBps. Now, say the CCA increases λ

to 15 MBps. If RTTs increase or losses happen, the CCA can
conclude that C≤15 MBps. Combining this with CCA’s past
observations, we can update the belief set to C∈ [10,15] MBps.
Otherwise, if RTT remains at 100 ms, then C∈ [15,∞) MBps.

We can compute beliefs for any CCA given its past
observations on a network model. The belief set serves as a
useful tool to reason about the performance of any CCA. For
instance, if the CCA above believes that C ∈ [15,∞) MBps,
then it needs to keep increasing its rate until it obtains an upper
bound on C by deliberately causing losses or increasing RTTs.
Otherwise, without an upper bound, the CCA risks arbitrarily
low utilization because the actual link rate could be arbitrarily
large, e.g. 1500 MBps. I.e.,

LEMMA 2.1. To avoid arbitrarily low utilization, a CCA
needs to shrink the set of possible paths (the belief set) it could
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Figure 1: Beliefs standardize the state in congestion control.

be running on by obtaining an upper bound on C.

In addition to it being necessary to shrink beliefs, we show
in §4 that the belief set is the only information a CCA needs in
order to decide sending rate. This is because the belief set is the
only information a CCA needs to estimate the performance im-
pact of its actions. This vastly simplifies CCA design (Fig. 1).

Traditionally, CCAs decide (Q1) what state (statistics)
to maintain from input signals, and (Q2) sending rate. For
instance, to answer Q1, CCA designers often consider “what
does packet loss tell us about the state of the network?”, “when
can bandwidth be measured?”, “what length of interval should
be considered to sample bandwidth?” [15, 16].

Belief computation is uniquely determined by a network
model and exhaustively derives all possible information about
the network’s path/state directly from the time series of CCA’s
sending and acknowledgment sequence numbers.1 We no
longer need to make ad-hoc decisions to answer Q1. This effec-
tively decouples Q1 and Q2 and standardizes the state a CCA
has to maintain. With beliefs, the CCA only decides the com-
putation in the shaded box that maps beliefs to sending rate.

Goals and non-goals. We want CCAs that provably achieve
bounds on utilization, delays, losses, and time to converge to
variations in link rate, under the following scenarios:

S1. Non-congestive delays or jitter. Delays can occur due
to reasons unrelated to congestion [6, 29], e.g., delayed ACKs,
ACK aggregation, OS scheduling, delays at the MAC and
physical layers. This hinders CCAs from bounding end-to-end
delays while ensuring high utilization. Traditional loss based
CCAs [31, 33, 34, 52] fill up queues until they experience a loss
and cannot bound delays. Delay based CCAs [8, 12, 15, 21, 46,
56, 57] use variation in measured round-trip times (RTTs) to es-
timate congestion. Jitter can cause these CCAs to mis-estimate
congestion and send at a rate as much as 10× away from the cor-
rect rate [7, 21, 46, 60]. For instance, jitter can trick BBR [15]
and Copa [8] into achieving near-zero utilization [7]. Recent
learning-based CCAs (§7) also do not explicitly consider jitter.

S2. Shallow buffers with jitter. Paths with shallow buffers
are common on the internet [24, 27, 28], because they prevent
buffer-bloat and help manage cost/area/power of routers [4,
23]. On such paths, it is challenging to maintain utilization
while avoiding excessive losses. Traditional loss-based CCAs,
including Cubic [31], get poor utilization in single flow cases
([55], §6.4). ACK-clocked CCAs, despite pacing, send bursts
of packets due to jitter (e.g., ACKs-aggregation [29]) which

1RTTs, ACK rates, and losses can be derived from sequence numbers.



risks excessive losses [7]. BBRv1 [15] is paced, but uses
aggressive probes that incur O(BDP) losses periodically [17].
BBRv2 [27] and BBRv3 [28] incur lower loss on average but
still incur O(BDP) losses in some cases (Appendix H).

In this paper, we only focus on the single-flow case with
an infinite backlog of data to transmit when designing prov-
ably performant CCAs for S1 and S2. Designing provably
fair CCAs robust to jitter is a hard problem [6] that we do not
address. Our current formal framework gives no guarantees or
predictions on the outcome of multi-flow experiments. Never-
theless, we empirically evaluate the fairness of our synthesized
CCAs under simple network conditions (Appendix H). We find
that some of our CCAs are fair while others are not. We believe
that addressing S1 and S2 in the single-flow case is a key step to-
wards addressing the multi-flow case. S1 and S2 are important
real-world scenarios that have been the focus of recent changes
to BBR [27, 28]. There are several situations where a flow is
alone in its bottleneck queue [13] where our insights imme-
diately apply (e.g., cellular networks). Our loss-convergence
tradeoff (§6.2) also applies with multiple flows and may guide
how buffers should be sized for networks with jitter.

Formally addressing S1 and S2, even in the single-flow case,
was challenging. As described above, none of the existing
CCAs achieve our goals. Beliefs and automated reasoning
allowed us to systematically explore the design space of
CCAs, unveiling previously unknown tradeoffs and novel
CCA mechanisms. We discovered and quantitatively proved
a fundamental tradeoff between loss and convergence time
on networks with shallow buffers. We synthesized CCAs
that are on this Pareto frontier. Existing CCAs, unaware
of the tradeoff, make sub-optimal tradeoffs or only explore
a subset of useful points on the Pareto frontier. We also
discovered new ways to use sending rate decisions to augment
the information obtained from RTTs and ACK rates. This
leads to better estimates of the network parameters (bottleneck
bandwidth/buffer) and state (queuing or extent of congestion)
(§6.2.1). We illustrate here with two examples.

Example 1. CCAs use the gap between instantaneous and
minimum RTTs to estimate queueing delay. Non-queueing
delays can create RTTs larger than the minimum RTT and
cause a CCA to erroneously infer that a queue is built up.
However, if the CCA has been sending at a low rate, then
we know there is no queue buildup even if there is inflation
in RTTs. In such cases sending rate choices provide a better
estimate about queueing than RTTs alone.

Example 2. Say a CCA sent a burst of packets to probe for
available bandwidth and observed that the probe did not incur
any packet loss. Then we can conclude that either the buffer or
the bandwidth is large enough to have accommodated the burst.
I.e., both the buffer and bandwidth cannot be small as that
would have incurred a loss. We cannot make such a conclusion
by relying on ACK rate and RTT measurements alone. Due
to jitter, a burst may not lead to an immediate increase in ACK
rate ([7], §4) which traditionally would have allowed us to

C – bottleneck link rate [r]
Rm – round trip prop. delay [t]
β – bottleneck buffer size [b]
D – max per-packet jitter [t]
MSS – maximum segment size [b]
BDP – C·Rm [b]
βs – buffer in seconds (β/C) [t]
T – time steps [unitless]
λ(t) – inst. sending rate [r]

θ(t) – instantaneous inflight [b]
q(t) – inst. bottleneck queue [b]
qdel(t) – inst. queueing delay [t]
RTT(t) – inst. round trip time [t]
S(t) – cumulative service [b]
A(t) – cumulative arrivals [b]
L(t) – cumulative loss [b]
[.]L(t), [.]U (t) – inst. lower and
upper bounds on parameter or
state, e.g., CL(t), CU (t)

Table 1: Glossary of symbols. The square brackets show the
units: bytes [b], rate [r], and time [t]. inst. = instantaneous. In-
flight is bytes that are unacknowledged and not inferred as lost.

CCA

Figure 2: CBR-delay network model.

conclude bandwidth is large. Likewise, an inflation in RTTs
could be due to jitter, and we cannot assume that the bottleneck
buffer is large enough to accommodate the inflation in RTTs.

CCmatic automatically synthesizes CCAs that use such
insights to make non-trivial decisions about when/how to
probe/drain. E.g., it realized that draining is necessary not only
to maintain low delay, but also to restrict losses when probing
for bandwidth on paths with jitter and shallow buffers (§6.2.1).

Our work addresses an important and challenging set of sce-
narios, and establishes a formal methodology for further explo-
ration. In the future, we hope to extend our methodology to for-
mally explore fairness between multiple flows, and robustness
to application-limited flows and non-congestive losses (§8).

3 Network models
We use CCAC [7] to succinctly express and efficiently explore
the scenarios in §2. CCAC uses a single bottleneck abstraction
to summarize the cumulative effects multiple elements on a
network path. It uses bounded model checking [19] to provide
a trace of CCA execution under various network behaviors.

Our investigations revealed that CCAC expresses behaviors
that are perhaps too adversarial for any CCA to handle (§6.1,
§6.2). So, we explore two other network models that are
weaker, i.e., they are less challenging from the CCA’s point
of view as they capture strictly fewer behaviors. We briefly
describe these models and use notation from Table 1. Note,
if a CCA works on a stronger model then it also works on a
weaker model, and an impossibility result for a weaker model
holds for a stronger model.

CBR-delay. This is motivated from [6]. It abstracts the
network as a constant bit rate (CBR) box followed by a
non-deterministic delay (or jitter) box, and a propagation delay
of Rm seconds (shown in Fig. 2). The CBR box has a constant
(over time), but arbitrary bottleneck bandwidth of C bytes/sec-
ond, and a buffer of size β bytes. It expresses the queueing



or congestive delays (and losses) at the bottleneck queue in a
network path. The delay box can add up to D seconds of delay
non-deterministically. Note, non-determinism is different
from randomness or stochasticity (e.g., uniform random
delays). Non-determinism allows the network to arbitrarily
inject bursts and provably express the cumulative effect of
various sources of jitter [6, 7, 10, 42]. Non-determinism (as
opposed to randomness) can express non-congestive delays
that may have causal effects or correlations.

CCAC [7]. It includes all behaviors captured by CBR-delay.
Additionally, CCAC can non-deterministically accept a burst
of packets without building up a queue, effectively hiding
congestive delays/losses even when the CCA is sending above
the link rate. In contrast, CBR-delay can inject non-congestive
delays but not non-deterministically hide congestive delays.
This is a crucial and previously unknown distinction that
changes the tradeoffs that CCAs must make (§6.1, §6.2).

Ideal link. It cannot add any jitter to packets. It is simply
a FIFO queue, with a constant (but arbitrary) bandwidth and
propagation delay. Several theoretical analysis [9, 18, 45, 49,
62] have used similar modeling. We study this to compare
CCAs designed for the ideal link vs. stronger models.

Variations in link rate over time. Like CCAC, all the
models assume a fixed link rate over time. We use CCAC’s
approach to express variations in link rates. CCAC and
CBR-delay express short-term link rate variations using
jitter. All the models express long-term link rate variations by
arbitrarily choosing initial conditions. E.g., a trace that begins
with a high congestion window (cwnd) relative to C emulates a
scenario where link rate decreased. Alternatively, a large initial
queue buildup, and low cwnd can emulate a case where the link
rate decreased and the CCA backed off, but the queue has not
drained. One can stitch such traces together to explore longer
executions with potentially multiple link rate variations (§5.2).

Formal definition. Mathematically, we view a network
model as a relation that relates ⟨path,state,CCA_action⟩ to
⟨next_state,CCA_feedback⟩. Note, due to non-determinism,
the relation may map a CCA action on a given path and state
to multiple feasible next states and feedbacks. The network
model also defines a set of initial states, and the domains of
path, state, action, and feedback.

For example, in the CBR-delay model, a path is described
by the parameters: link rate, propagation delay, amount of
jitter, and buffer size, e.g., ⟨C,Rm,D,β⟩; and state by: bytes in
the bottleneck queue (q) and bytes in flight (θ), e.g., ⟨q,θ⟩. The
model’s relation is defined by constraints, such that feasible
solutions to the constraints are the tuples in the relation.

4 Belief framework
DEFINITION 4.1. A belief set (or beliefs) for a given network
model is the set of paths (and their latest states) that could
have produced (according to the network model) the historical

Network model 
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Figure 3: Inverting the network model to compute beliefs.
Depending on the CCA’s observations, we may get different
bounds on the belief set. The bottom three plots illustrate the
constraints on the belief set we get depending on whether the
CCA observed qdel>D, loss, or neither (for CBR-delay).

sequence of CCA’s observations. It is the CCA’s belief about
the paths and states of the network it is running on.

For example, for the CBR-delay model, the belief set is a
set of tuples of the form ⟨C,Rm,D,β,q,θ⟩. Such a tuple is in
the belief set if and only if it can explain (according to the
network model), the observations of the CCA thus far. We use
the term observations to collectively refer to CCA’s actions
and feedback from the network.

Computing beliefs. We can “invert” the network model’s
relation to compute beliefs (Fig. 3). Specifically, the
constraints of the model describe the feasible ways in which
the network’s state and feedback can evolve (e.g., how it
services (delays) packets, drops packets, and builds queues),
given the CCA’s sending behavior, the network path, and the
network’s initial state. I.e., the constraints describe feasible
combinations of ⟨S(t),L(t),q(t),θ(t)⟩, A(t), ⟨C,Rm,D,β⟩, and
⟨q(0),θ(0)⟩. If we fix the observations, i.e., ⟨A(t),S(t),L(t)⟩,
then the constraints describe the feasible paths and states that
could have produced CCA’s observations. This is the belief
set. Each constraint of the network model gives us a constraint
on the belief set. This is similar to conversion of a partially
observable markov decision process (POMDP) into a belief
MDP [37]. We perform the inversion §5.1 and §6.2.

As a quick example, for the CCAC model, in an interval
of length T , the network can serve at a rate C and inject a
burst of D seconds, i.e., S(T)−S(0)≤CT+CD, where S(t)
is cumulative bytes served (delivered) until time t. If we invert
this constraint on S to a constraint on C, we get C≥ S(T)−S(0)

T+D .

Shrinking beliefs is necessary. CCAs need to shrink the
size of the belief set, i.e., infer the possible parameters and
states of the network they are running on. We illustrate this
using a family of lemmas (Lemma 2.1, Lemma 4.1) that show
the dimensions along which beliefs need to shrink to ensure
different performance properties.

LEMMA 4.1. To ensure an upper bound on queueing delay
(qdel), a CCA needs to shrink the set of possible propagation



delays the network could have.

Consider a CCA that aims to ensure qdel ≤ 10 ms on an
ideal link. Say it has set cwnd = 10 MB, and observes that
all RTTs are 100 ms, yielding an average throughput of
cwnd/RTT = 100 MBps. Such RTTs can be explained by C =
100 MBps, and any Rm∈ [0,100] ms, and qdel=100−Rm, i.e.,
qdel∈ [0,100] ms. Now, say the CCA decreases cwnd to 5MB.
If RTTs are still 100ms, i.e., RTTs do not decrease with cwnd,
the CCA can conclude that Rm = RTT = 100 ms and qdel = 0 ms.
Otherwise, if RTTs drop to 50 ms, i.e., the average throughput
is still 100 MBps, Rm and qdel still remain in [0,100] ms.

Until a CCA decreases cwnd to the point that RTTs stop
decreasing, it cannot obtain a lower bound on Rm, consequently
it cannot ensure an upper bound on qdel.

Beliefs are sufficient. Beliefs allow a CCA to compute
possible next state(s) and feedback(s) (and consequently
potential future performance) for different sending rate
choices. Due to this, a CCA does not need to look at any
information other than the belief set when deciding its actions.

THEOREM 4.1. If there exists a deterministic CCA that en-
sures a performance property on a network model, then, there
exists a belief-based CCA that ensures the performance prop-
erty on the model. Where, a deterministic CCA is a CCA whose
actions are a function of the entire history of past observations
(i.e., its actions and feedback) and a belief-based CCA is a
CCA whose actions are a function of the belief set computed
using the network model over the history of past observations.

For this theorem, we assume that the performance property
is specified as a boolean valued function over a belief set and
CCA’s action on that set. We show in Appendix A how the
properties we use can be expressed in this form.

We use this theorem to (1) synthesize CCAs as function
of the belief set, and (2) to prove impossibility results, i.e., if
there is no action that can ensure a performance property over
all tuples in a valid belief set, then the performance property
is not achievable. We use such arguments in §6.2.

Appendix A gives a formal proof by constructing a
belief-based CCA using the deterministic CCA. Here we give
the intuition. We view congestion control as a 2-player (CCA
vs. network) zero-sum game. The network tries to prevent
the CCA from achieving its performance property. The CCA
chooses its sending rate and the network delivers, delays, or
drops packets. The only “rule” is that the network’s actions
must correspond to some path in the network model.

The belief set exhaustively summarizes the history of the
game, making it memoryless (similar to the board state in
chess). Beliefs serve as a “board” by meeting the two require-
ments: (R1) we can determine the set of feasible moves for the
players from the board allowing us to enforce the game rules
(Lemma A.1), and (R2) we can update the board by applying
the moves (Lemma A.2). As a result, future progressions
of the game (and any optimal strategies) depend only on the
board (beliefs) irrespective of the history that led to the board.
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Figure 4: CEGIS loop (adapted from [1]).

5 CCmatic: Synthesizing CCAs
We use Counter-Example Guided Inductive Synthesis
(CEGIS) [51] (a program synthesis technique) to synthesize
(search for) CCAs given a specification (i.e., a network model
and a performance property).

CEGIS iteratively generates a candidate CCA from a search
space 1 , and finds a counterexample scenario (network path,
initial state, and non-deterministic choices) that breaks the
performance property for the candidate CCA 2 (Fig. 4). The
search space is pruned using the counterexamples (see below),
and eventually the loop terminates if either (1) the verifier
cannot find a counterexample (and thus, the CCA achieves
the performance property) 3 , or (2) the entire search space
has been pruned (no CCA in the search space can achieve the
performance property) 4 .

We implement the generator and verifier using the constraint
solver Z3 [47], by encoding the search inputs (i.e., search
space, network models, and performance properties) into
SMT (Satisfiability Modulo Theories) constraints in the
theory of linear real arithmetic (LRA) [38]. In the generator,
we only search for CCAs that pass unit checks (e.g. do not
add bytes with seconds). For each counterexample, we add
constraints to prune all CCAs that make the same sending
rate choices as the candidate CCA on the counterexample. We
explored encodings that prune more CCAs, these did not yield
significant reduction in search time, and we omit their details.

For encoding into SMT, we use beliefs to define the search
space (§5.1) and a transition system abstraction to systemat-
ically define performance properties (§5.2). For the network
models, we adopt the encoding proposed by CCAC [7].
It discretizes time and uses Network Calculus [41] style
formulas to constrain how the network serves packets. Note,
the synthesis happens offline. One can directly implement
the synthesized CCAs in network stacks like the Linux kernel
and QUIC [40]. For completeness, we provide details on the
implementation of the verifier and generator in Appendix C.

5.1 Belief-based CCA Template
In CEGIS, the search space is often specified using a template
or grammar. The template has placeholders (or holes) that
the generator fills to synthesize a concrete CCA. It describes
the inputs (e.g., loss/delays signals) that the CCA takes and
the mathematical/logical operators it can use to compute
its outputs (i.e., rate and state). Due to Theorem 4.1, the
templates do not need to describe state computations. They
can just take beliefs as inputs and produce rate as the output
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Figure 5: Over-approximating beliefs.

to fill the shaded box in Fig. 1.

Inputs. We face two challenges with beliefs. First, the belief
set may be a complicated object in the ⟨path,state⟩ space. For
easier encoding, we over-approximate it using closed-form
expressions (see below). Second, our network models do not
directly model variations in link rate (§3). When the link rate
varies, it can go outside the belief set. To address this, we re-
compute beliefs using a recent history of observations (§5.1.2).

Over-approximating beliefs. We construct closed-form ex-
pressions representing bounds on the network parameters and
states. For example, we use CL and CU to represent lower and
upper bounds on the C values in the belief set, and pass these
bounds as input to the CCA. By default, we pass upper and
lower bounds on C (CU , CL), and qdel (qdelU , qdelL) as a proxy
for q. We describe how we compute them in §5.1.1. We assume
the CCA knows Rm, and design CCAs for D=Rm (i.e., jitter
can be as large as Rm, e.g., due to WiFi ACK aggregation [29]).
This enables efficient synthesis by discretizing time in units
of Rm (as in CCAC [7]). In reality, a CCA does not know Rm.
Nevertheless, we show in Appendix B that if we use a CCA
designed for Rm equal to the minimum RTT seen thus far, we
can guarantee performance because the synthesized CCAs are
inherently robust to uncertainty in RTTs caused by jitter.

While the closed-form expressions may over-approximate
beliefs, i.e., include extra paths that cannot produce the
CCA’s observations (Fig. 5), they never remove paths that can
produce its observations. We use the verifier’s (i.e., CCAC’s)
assistance to both validate correctness of the closed-form
expressions and to derive them (§5.1.1).

Over-approximation (as opposed to under-approximation)
does not break soundness. The CCA believes it could be
running on extra paths, and needs to take actions that do
not violate performance on the extra paths. However, over-
approximation does break completeness, i.e., Theorem 4.1
no longer applies.2 It may happen that we summarize two
different histories using the same approximate beliefs even
though the actual belief sets are different. A belief-based
CCA is allowed to take different actions on the histories, but
a CCA in the template is forced to take the same action. As
a result, CCmatic may output “no solution in template” even
though a belief-based CCA works. When this happens, we
explore weaker network models where we can add additional
beliefs (e.g., βL, qU ) or tighten existing ones (§6.2.1). Despite
approximations, CCmatic synthesizes novel CCAs (§6.1).

Operators. Some CCAs use nonlinear operators like cube

2Note, Theorem 4.1 also does not apply because we only explore a subset
of belief-based CCAs using CCmatic.

root [31] or division [8]. Non-linearities slow down SMT
solvers [58]. Instead, we search for piece-wise linear functions
to map belief bounds to sending rates, represented as (nested)
if-else statements. The generator synthesizes the conditionals
and expressions in these statements as linear combinations
of the belief bounds. While CCmatic only searches for CCAs
in the template, we are able to generalize CCmatic’s insights
to arbitrary CCAs, e.g., impossibility results in §6.2.

Listing 1: Belief-based CCA template

1 condi = ? CU + ? CL+ ? qdelU + ? qdelL+
2 ? MSS/Rm+ ? Rm>0
3 exprj = ? CU + ? CL+ ? MSS/Rm
4 if (cond1): rate = expr1;
5 elif (cond2): ...
6 else: rate = exprn;
7 rate = max(rate, MSS/Rm) # Ensure +ve rate.

Summary. Our templates take the form in Listing 1. ?
denotes holes to be chosen by the generator. Different
templates have different number (and nesting) of the “if”
conditions. To keep the search tractable, we restrict the domain
of the holes to be a small finite set, e.g., {−3,−5/2,−2...,3}.

5.1.1 Computing belief bounds

Queueing delay. Traditionally CCAs estimate queueing
delay as RTT −Rm [8]. However, this does not account for
non-congestive delays. In the CCAC and CBR-delay models,
RTT(t)=Rm+qdel(t)+jitter(t), where 0≤ jitter(t)≤
D. Consequently, qdel(t)∈ [qdelL(t),qdelU (t)] where,

qdelU (t)=RTT(t)−Rm

qdelL(t)=max(0,RTT(t)−Rm−D) (5.1)

Link rate. BBR [15] estimates link rate as the measured
ACK rate. Jitter can create transient variations in ACK rate
and mislead this estimate. Using the verifier (CCAC), we
computationally derive the set of link rates that can explain
an average ACK rate of r (i.e., the CCA received rT bytes in
an interval [t1,t2] of length t2−t1=T seconds). We also derive
this set analytically in Appendix B.

We query CCAC for feasible values of r after fixing λ(t)=λ

(for all t). We repeat for different values of λ to obtain the
bounds: rT ∈ [C(T−D),C(T+D)] if λ≥C, and rT ∈ [λ(T−
D),C(T+D)] otherwise. A CCA can be sure that λ≥C in two
cases, (1) RTT >Rm+D over the entire interval (or qdelL>0)
(indicating non-zero queueing), or (2) there are losses in the
interval (we verify this, see below). By inverting the bounds
on r, we get bounds on C (algebraic steps in Appendix B):

CL(t)= max
0≤t1≤t2≤t

r·T
T+D

CU (t)= min
0≤t1≤t2≤t

r·T
T−D

(5.2)

Note, CU is only computed over the intervals where qdelL>0
or loss > 0. We checked these calculations by asking CCAC
if there is a trace and CCA (i.e., CCAC is free to choose λ(t))
for which C /∈ [CL,CU ]. CCAC returned UNSAT, confirming
that no traces violate our calculation.



5.1.2 Handling stale beliefs

Our network models do not explicitly model variations in link
rate. Such variations can make the beliefs inconsistent (or
stale), i.e., the network can take actions outside the belief set,
leading the CCA to make bad decisions. For example, the
link rate may decrease below CL making the beliefs stale. The
CCA may still transmit at rate CL thinking that C ≥ CL, but
cause losses due to the reduced link rate.

We “time out” beliefs periodically (e.g., every 10Rm), and
also when they become empty (or invalid), e.g., CU < CL.
On a timeout, we re-compute beliefs using the history of
observations since the last timeout. When beliefs become
inconsistent by a large margin, they become invalid quickly.
However, if they are slightly inconsistent, they may remain
valid. The periodic (speculative) timeouts helps make beliefs
consistent in the second case. For example, say C decreases
below CL, i.e., C=CL−ε for some ε>0. The beliefs become
empty when CU <CL. CU = r·T

T−D , where r could be as large

as C·(T+D)
T . For CU <CL, we need C(T+D)

T−D <CL=C+ε. This
can take arbitrarily long time for arbitrarily small ε.

We retain our performance guarantees as long as any of
the following holds: (1) the network parameters change
infrequently so that they become consistent on the periodic
timeouts, (2) parameters change by large margin, so that
beliefs become invalid and timeout, or (3) parameters change
within the belief set (i.e., remain consistent). We may violate
our guarantees if the parameters frequently (e.g., every Rm)
change to values just outside the belief set. However, since
the beliefs are slightly off (e.g., 5%), our guarantees will
also only be slightly off. Note, in general, frequent changes
in network parameters is a hard problem for end-to-end
congestion control due to feedback delay. Our CCAs react to
changing network parameters at similar timescales as existing
end-to-end CCAs (Appendix F, Appendix H).

Note, the periodic timeouts can interfere with a CCA’s
probes to estimate the belief set. We add constraints to
prevent unnecessary timeouts. E.g., a CCA might be draining
the queue and may not observe any delays/losses. If we
recompute beliefs only using the recent history, there may be
no upper bound on C, and the CCA would need to re-probe
CU from scratch. To prevent this, we only time out beliefs
when the size of belief set is small (e.g., CU ≤ 1.1CL), and
we put bounds on how much the belief set can expand, e.g.,
CU (now)≤2CU (last_timeout). These restrictions along with
the timeout period affect how quickly CCAs tracks changes
in link rate. Appendix F (Lemma F.2) studies this theoretically
and Appendix H (Fig. 19 and Fig. 18) studies this empirically.

5.2 Transition system based properties
The verifier uses bounded model checking to explore short
snapshots of a CCA’s execution under the network model.
On such snapshots, metrics like long-term average utilization
may be violated (e.g., CCA may take time to ramp up sending

(I) Beliefs
inconsistent.
CL(0)> C∨
CU (0)< C

(II) Beliefs
consistent.

CL(0)≤ C∧
CU (0)≥ C

(III) Beliefs
converged. II∧
CL(0)> C

2 ∧
CU (0)< 2C

(IV) Queue
converged.

III∧q(0)<
2C·(Rm +D)

Beliefs become consistent

Beliefs shrink

Queue drains

Figure 6: An example transition system. The formulas in the
boxes (e.g., “III∧q(0)<2C·(Rm+D)”) define the states.

rate when the link rate increases). We use CCAC’s approach
to prove lemmas over the snapshots and stitch them using
mathematical induction (on time) to prove properties about
arbitrarily long executions. To do this stitching, we need to
define what “progress” CCAs need to make in a transient
period (e.g., CCA ramps up sending rate until it meets a
utilization objective and then maintains utilization). CCACs
approach to define progress is ad hoc and CCA dependent.
This becomes unwieldy as the number of objectives and CCAs
increase. To systematically state lemmas, we use a transition
system abstraction. We use it to build (1) proofs about the
performance of CCAs, and (2) invariants used for synthesis.

Transition system. Fig. 6 shows an example transition
system. The states are represented as symbolic boolean
formulas (e.g., “beliefs are consistent”, or CL(0)≤C≤CU (0)).
For each state, users specify (1) transitions made in time
0 to T (e.g., “beliefs shrink”: CL(T) > 1.5CL(0)) and (2)
objectives during the period (e.g., “delay is at most D seconds”:
∧t∈[0,T]qdel(t) ≤ D). Note, users only declare “what”
properties the CCA should ensure, CCmatic figures out “how”.

A belief-based CCA under our network models typically
makes the following transitions. Whenever the link rate
changes, the beliefs can become inconsistent (stale). Even-
tually, the beliefs become consistent (due to §5.1.2), then
the beliefs shrink (as this is necessary from §4), and finally,
the CCA reaches the steady state (e.g., state IV) where it
meets its steady-state objectives. Users can express both
steady-state and transient objectives. For instance, high loss
may be acceptable during slow start (e.g. in state I-III), but
not for subsequent bandwidth probes (e.g., in state IV).

Proofs and encoding. We build a lemma for each state
(e.g., State I =⇒ (State I objectives∧State I transitions)) and
take the conjunction (logical and) of these lemmas. This
conjunction serves as the proof of performance for the CCA,
as it exhaustively describes the states that the CCA visits and
performance it ensures in each state. It is exhaustive because
the disjunction of the transition system states is a tautology,
i.e., covers all possible states. Appendix F gives the encoding
of the lemmas and shows how they work together in a proof.

The transitions happen eventually, i.e., may occur over
multiple steps. Due to this, the encoding of lemmas needs
to ensure that transition progress adds up over stitched
executions. For instance, we encode “beliefs shrink” as “at
least one of C − CL and CU − C decreases” and “neither



increases”. The second literal, “neither increases”, is required.
Without it, both CL and CU can increase in one execution, and
decrease in the subsequent execution and the progress does
not add up. Such a CCA can meet the “at least one” criterion
without ever transitioning to state III.

Synthesis invariant. We do not directly use the proof (i.e.,
the conjunction of lemmas) for synthesis. Instead, we build
under-specified invariants that are necessary for a proof but
not sufficient. We under-specify for two reasons. First, the
lemmas contain constants that depend on the CCA, which
is not known at the time of synthesis (e.g., 2C, C

2 , in Fig. 6).
Second, before synthesis, we do not even know if there exists
a CCA that can meet the lemmas. Under-specification allows
us to synthesize reasonable-looking CCAs, which we then
process post synthesis (see below).

To under-specify, we drop literals (inequalities) with
unknown constants. Notice, that such literals define states
III and IV (Fig. 6). Due to dropping, we cannot distinguish
between states II-IV. We coalesce states II-IV into one, and
allow the CCA to take any transition that is valid for states II-IV
(effectively taking disjunction of the transitions). We similarly
combine state III and IV objectives into steady_state_obj,
and retain state II objectives as transient_obj. The result is
Eq. 5.3 below. We use it for synthesizing CCAs with different
choices of objectives (§6.1).

beliefs inconsistent =⇒
(State I objectives ∧ beliefs become consistent)

∧beliefs consistent =⇒ (transient_obj∧(beliefs shrink
∨ large queue drains ∨ steady_state_obj)) (5.3)

Users are free to choose the degree of under-specification.
They may drop literals (as we do), set loose bounds for the
constants (e.g., CU (0)<10C for state III), or even synthesize
CCAs that meet specific constants.

Post synthesis. The synthesis invariant is not a sufficient
proof. Hence, after synthesis, we build proof lemmas for the
solution CCAs. To determine the constants in the lemmas, we
use binary search to identify the region of values for which
the lemmas hold. We describe this process in Appendix F. If
there is no value of constants for which a particular lemma
holds, we tweak the CCA, invariant, and/or the lemma(s). For
example, when trying to build proof lemmas for a particular
synthesized CCA (cc_probe_slow in §6.1), we found that the
queue needs to be drained before beliefs can converge, i.e.,
“queue converged” in state IV (Fig. 6) needs to happen before
“beliefs converged” in state III. So we reorder and redefine the
states in the transition system and lemmas to reflect this and
build a proof of performance for cc_probe_slow.

6 Results
We present four types of results. (§6.1) CCAs synthesized
by CCmatic for various environments and objectives combi-
nations. (§6.2) Fundamental tradeoffs inspired by negative

outputs of CCmatic. (§6.3) Proofs that the synthesized CCAs
ensure their performance objectives. (§6.4) Empirical eval-
uation of the synthesized CCAs to validate our mathematical
modeling and proofs of performance.

6.1 Synthesis queries
A query describes the search inputs: (1) search space, (2)
network model, (3) performance properties. Using CCmatic
is an iterative process. One may realize that the performance
properties are infeasible, the network model is too adversarial,
or the approximations in the template are limiting. As we
ran queries, our understanding improved, and we built new
queries that better reflected our requirements (Table 2).

Objectives. We require CCAs to ensure a lower bound on
the utilization, and upper bounds on the amount/frequency of
losses and bytes in flight (to bound packet latencies). We add all
these objectives to steady_state_obj in Eq. 5.3. Our primary
focus is on exploring asymptotic bounds, e.g., are losses O(C),
O(log(C)), etc. So we specify asymptotic bounds with loose
constants. For example, we query CCAs that ensure utilization
≥50%, and inflight≤5·C·(Rm+D). The loose constants allow
under-specifying the synthesis invariant (§5.2). Later, when
building proofs, we identify the best constants the synthesized
CCAs can achieve (Appendix F). Note, the inflight bound has
to be at least CRm +CD . Because, to provide a utilization
lower bound, a CCA needs to fill the wire (CRm bytes) and
build D seconds or CD bytes of queueing (Theorem 2 of [6]).

We classify loss amount into small and large. Small means
that loss is at most a few packets independent of C, or O(1).
Otherwise, loss is large, or ω(1), it increases with C. The
verifier (SMT solver) explores traces numerically and there is
no direct way to encode ω(1). As a workaround, we classify
more than 3MSS loss as large. For frequency, we query CCAs
that cause at most one small loss every other Rm, and never incur
large losses. By default, we put these constraints in steady_-
state_obj, later we also put them in transient_obj, e.g., G4 .

Environments. We sought CCAs that can handle paths
with arbitrary buffer sizes and adversarial delay jitter as
modeled by CCAC and CBR-delay (§2, §3). As stepping
stones, we designed CCAs for restricted buffer sizes, viz.
(1) infinite (β = ∞), (2) small fixed (β = 1

2 CD), and (3)
large (β ≥ 3·C·(Rm +D)). These values formed interesting
thresholds during our experimentation. We represent arbitrary
buffer as β≥0, i.e., the verifier is free to choose the buffer size.

Templates and solutions. We synthesize all CCAs that
satisfy a query. When CEGIS finds a solution, we prune it
from the search space and let the loop continue until it cannot
find more solutions. For each solution, we also prune CCAs
that have same coefficients for the belief bounds but different
coefficients for the constants (i.e., MSS/Rm, Rm) to avoid
enumerating similar CCAs.

When CCmatic does not produce a solution, we increase
(1) the program size (number of “if” expressions), and (2) the



Environment Objectives Template Trace # Solutions Time # Itr
Network

model (§3) β
Constrain loss

(transient_obj)
# Expr
(“if”)

Search
size (# CCAs)

Length
(# Rm) (secs) (CEGIS)

G1
CCAC Infinite N/A 2 3×104 4 0 16 40
CCAC Infinite N/A 2 3×104 5 4 CCA1 48 58
CCAC Infinite N/A 2 3×104 11 6 CCA1 CCA3 7328 64

G2 CCAC Small fixed No 2 3×104 7 6 CCA2 CCA3 4942 49
G3 CCAC Arbitrary No 2 3×104 11 2 CCA3 7699 52

CCAC Small fixed Yes 3 108 11 0 5067 79
G4 CCAC Arbitrary Yes 3 108 11 0 6851 76

G5
Ideal Infinite N/A 2 3×104 3 48 26 86
Ideal Small fixed Yes 2 3×104 3 194 51 229
Ideal Arbitrary Yes 2 3×104 3 23 21 67

G6 CBR-delay Arbitrary Yes 2 2×106 7 20 CCA4 19331 513

G7

CCAC Large No 2 3×104 11 6 CCA1 CCA3 9812 79
CCAC Large Yes 2 3×104 11 4 CCA1 6884 45

CCAC Arbitrary Yes only if
β≥3C(Rm+D)

4 3×1011 9 6 CCA5 46582 691

Table 2: Summary of queries. The “# solutions” column also lists CCAs that are representative of the solutions produced. Some
entries in “constrain loss” column are not applicable (N/A) as (congestive) loss is not possible when buffer is infinite.

Listing 2: Synthesized CCAs (αR=MSS/Rm)

G1 CCA1 cc_qdel
if (qdelL >0):

rate =1/2CL
else:

rate =2CL

G2 CCA2 cc_probe_fast
if (CU <2CL):

rate =CL
else:

rate =2CL

G3 CCA3 cc_probe_drain
if (CU >2CL−2αR):

rate =2CL+αR
else:

rate =CL−αR

G6 CCA4 cc_probe_slow
if (qU >MSS):

rate =CL,λ−qU/Rm
else:

rate =2CL,λ+αR

G7 CCA5 cc_probe_qdel
if (CU <3/2CL):

if (qdelL >Rm):
rate =αR

else:
rate =CL

else:
if (CU >2CL):

rate =2CL+αR
else:

rate =CL

length of the trace that the verifier considers (to give CCAs
more time to show the progress required by our invariant).
E.g., in G1 , we get more solutions as we increase the trace
length. For other queries we only show queries with the largest
templates and longest traces. We also add new or tighter beliefs
to the templates when we explore weaker models, e.g., G6 .

Synthesized CCAs. Listing 2 shows the synthesized
CCAs. We group similar queries together. G1 , G2 , and
G3 explore CCAC with infinite, small and arbitrary buffer
respectively. CCmatic synthesized CCA1 (cc_qdel), CCA2
(cc_probe_fast), and CCA3 (cc_probe_drain). CCmatic
automatically figured out non-trivial insights about the
network. E.g., cc_qdel simultaneously guarantees bounds
on utilization and inflight. It sends above CL until qdelL > 0.
qdelL>0 (Eq. 5.1) can only happen if queue is non-zero which
can only happen if the link is utilized. Likewise, draining
whenever qdelL>0 ensures inflight is bounded.

cc_probe_fast and cc_probe_drain “probe” when CL and

CU are far. They send above CL resulting in either increasing CL
(due to increase in ACK rate), or decreasing CU (due to increase
in qdel or losses). cc_probe_drain additionally drains queues
by sending below CL. cc_probe_fast does not drain as it was
synthesized for a small buffer which trivially bound inflight.

We empirically evaluated cc_probe_drain and found that
it incurs periodic large loss (experimental setup described
in §6.4). This was surprising as we specifically queried for
a CCA that avoids large losses in steady state. We realized this
happened because of under-specifying the synthesis invariant.
Due to the disjunction, “beliefs shrink ∨···∨ steady_state_-
obj”, the CCA is allowed to cause large losses if this allows
shrinking beliefs. As a result, on the periodic belief timeouts
(§5.1.2), cc_probe_drain caused losses when re-probing to
re-estimate beliefs (similar to BBR’s 8 cycle probes).

G4 We updated our query to ensure that when beliefs
are consistent, CCA’s probes (increasing sending rate)
should not incur large losses.3 I.e., we “AND” the syn-
thesis invariant with the formula: “beliefs consistent =⇒
(sending rate increases =⇒ no large loss)”. This is equivalent
to updating transient_obj in Eq. 5.3. CCmatic did not
produce any solution after this modification.

G5 To dig deeper, we investigated weaker network models
(§3). We set D = 0 to emulate an ideal link. CCmatic
synthesized a CCA that sends at rate “CL + MSS/Rm”,
allowing it to probe for bandwidth while risking at most
constant losses. However, this does not work with CCAC.
Since CCAC can delay packets, this probe may not lead to an
immediate increase in ACK rate. For CCAC, a CCA needs
to build D seconds of queueing to disambiguate effects of
utilization (congestion) from non-congestive delays (see §6.2).
Sending at CL+MSS/Rm takes Ω(CL) time to build a queue
of D seconds, and the same CCA cannot show progress (shrink

3Large losses may still happen when the link rate decreases. No CCA can
avoid this due to feedback delay.



beliefs) in a short fixed-length trace.

G6 We ran synthesis for CBR-delay using the same beliefs
as CCAC. CCmatic could not synthesize any CCA that
could avoid large loss. This led us to discover and prove a
fundamental tradeoff between loss and convergence time
(§6.2). The proof led us to a tighter beliefs for CBR delay.
Using these, CCmatic synthesized CCA4 (cc_probe_slow).
cc_probe_slow meets the loss-convergence tradeoff implying
that it is tight. It risks O(1) packet loss and takes O(C) time
to converge. For the synthesis, we added belief bounds on link
rate (CL,λ), buffer size, and bytes in queue (qU ). We explain
these bounds and working of cc_probe_slow in §6.2.1.

G7 There is no loss-convergence tradeoff when buffers are
large. We want a CCA that converges fast without incurring
large loss. Additionally, on shallow buffers, we want large loss
to occur only when needed i.e., for probing (shrinking beliefs).
CCAs already synthesized do not fit this bill. CCA1 (cc_qdel)
avoids large losses when the buffer is large, but causes large
losses on short buffers even when it is not shrinking beliefs.
CCA3 (cc_probe_drain) avoids large loss when it is not
shrinking beliefs, but causes large losses when probing even on
large buffers. CCmatic synthesized CCA5 (cc_probe_qdel).
It gets the best of cc_qdel and cc_probe_drain.

6.2 Loss vs. convergence tradeoff

In G4 and G6 , CCmatic had failed to produce CCAs that
risk at most constant loss on CBR-delay and CCAC. All
human designed CCAs that we could think of also failed. On
investigating the counterexample traces for the human and
machine designed CCAs, we suspected that it is impossible to
avoid large loss events. On trying to prove this, we discovered
a tradeoff between amount of loss and convergence time, i.e.,
time it takes for a CCA to ramp up its sending rate to the link
rate. This tradeoff applies whenever the link rate increases,
and the CCA needs to ramp up (including slow start).

THEOREM 6.1. For an end-to-end deterministic CCA running
on a CBR-delay network with parameters ⟨C,Rm,D,0< β≤
CD⟩, to avoid getting arbitrarily low utilization, the CCA must
either (1) cause ω(1) packet loss, i.e., losses that increases
with C, or (2) take Ω(C(Rm+βs)) time to converge to the link
rate. Where, βs=β/C, i.e., buffer size in seconds.

In general, for a CCA to ramp from C0 to C while risking
O( f (C)) loss, the convergence time is Ω(F−1(C)(Rm+βs)),
where F−1 is the inverse of F , and function F is defined as:

F(0)=C0 and, F(k)=F(k−1)+ f (F(k−1))/βs

If C is not in the domain of F−1, we evaluate F−1 at the
smallest value greater than C in the domain of F−1. The
function F(k) tracks the maximum rate a CCA can ramp up
to in k RTTs under the loss allowance f . Correspondingly,
F−1(C) gives the minimum number of RTTs needed to ramp
up to rate C under loss allowance f .
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Figure 7: Each curve shows F−1(C) corresponding to f (C)
in the legend. I.e., under loss allowance f , the time F−1, to
converge from some small (positive) rate ε to C. Time from C0
to C is given by “time from ε to C”− “time from ε to C0” or
F−1(C)−F−1(C0).

Fig. 7 shows the convergence time F−1 for different choices
of loss allowances f . For example, if the CCA is willing to
risk O(C) losses, i.e., f (C) = C, then the convergence time
is Ω(log(C/C0)). If f (C) = const (independent of C), then
the convergence time is Ω(C−C0). For other functions f , the
convergence time may not have a nice closed form expression.

While this tradeoff may seem intuitive, it only holds when
there is complicated jitter. On ideal links, a CCA can ramp
up in O(1) time while risking O(1) packet losses, using packet
trains [39]. The inter-arrival times for a packet train is the
inverse of the bottleneck rate (i.e., MSS/C) and reveals C.
Such techniques may even work for links with iid (independent
and identically distributed) jitter. However, in practice,
links do exhibit complicated jitter patterns and break such
bandwidth estimates [22].

Below, we provide intuition and outline the proof for Theo-
rem 6.1. We also prove a similar loss-convergence tradeoff for
ideal links when packet trains are not allowed and β = 0. This
proof is similar to that of Theorem 6.1, we omit it for brevity.

Intuition & counterexample trace. The tradeoff is valid
only on shallow buffers (i.e., β ≤ CD). This renders RTT
measurements meaningless, forcing the CCAs to rely on
losses . On larger buffers, faster convergence is attainable
by relating how RTT varies with varying sending rate. When
β≤CD, the queueing delays are at most D seconds. The delay
box can choose jitter such that RTTs are at most Rm + D. Such
RTTs could be due to queueing delays (resulting from varying
sending rates), or due to jitter in the delay box, and there is
no way for the CCA to distinguish between the two.

We investigated a CCA that additively increases its sending
rate every RTT until it sees a loss, to see why it cannot avoid
large loss. The verifier gave us a trace where the CCA keeps
blindly increasing its sending rate even when it is already above
the link rate. Eventually the queue builds up and O(BDP) loss
happens. The CCA needs to resort to blind increases because it
does not get any feedback until it causes loss (as queueing delay
measurements are meaningless). If these blind increases are
aggressive, this results in larger losses with faster convergence
and vice versa. cc_probe_slow drains queues along with



additive increments to meet the bound in Theorem 6.1 (§6.2.1).

Proof outline. (Full proof in Appendix D) We first show that
due to β≤CD, a CCA must cause loss to avoid arbitrarily low
utilization (Step 1.). Then we compute a tight lower bound be-
lief (CL,λ) for C, for CBR-delay (belief computations in §5.1.1
were for CCAC) (Step 2.). The CCA could be running on any
link with C≥CL,λ, and it needs to ensure it does not cause loss
on any of these links. This allows us to compute the amount
of loss a CCA risks any time it probes for bandwidth (Step
3.). If we restrict this risk of loss to a constant independent of
C, it gives us a constraint on how quickly the CCA can ramp
up, giving us a lower bound on the convergence time (Step 4.).

6.2.1 cc_probe_slow shows Theorem 6.1 is tight

We describe beliefs for CBR-delay, how cc_probe_slow
works, and why cc_probe_slow does not work for CCAC.

Bandwidth and buffer beliefs. For CBR-delay, to obtain
an upper bound on C, a CCA needs to cause loss or build more
than D seconds of queueing (from Step 1. of Theorem 6.1).
We compute the set of paths ⟨C,β⟩ that can produce CCA’s
observations until time t∗, such that the CCA has not observed
qdel>D or loss until t∗. This means that until t∗−RTT(t∗),
the enqueued bytes never exceeded the dequeued bytes by
more than D seconds (CD bytes) or buffer size. I.e., ∀t1,t2,
such that, 0≤ t1≤ t2≤ t∗−RTT(t∗):∫ t2

t1
λ(s)ds−C·(t2−t1)≤CD (6.1a)

and,
∫ t2

t1
λ(s)ds−C·(t2−t1)≤β (6.1b)

From (6.1a), we define CL,λ as:

CL,λ(t
∗)= max

0≤t1≤t2≤t∗−RTT(t∗)

∫ t2
t1 λ(s)ds

t2−t1+D
(6.2)

We evaluate (6.1b) over the interval [t∗1 ,t
∗
2 ] (length T∗= t∗2 −t∗1 )4

corresponding to the tightest bound on CL,λ:
CL,λ(t

∗)·(t∗2 −t∗1 +D)−C·(t∗2 −t∗1 )≤β

or, C·T∗+β≥CL,λ(t
∗)·(T∗+D) (6.3)

From (6.2) and (6.3), we get the belief set illustrated in Fig. 8:
{⟨C,β⟩ |C ≥CL,λ(t∗)∧C·T∗+β≥CL,λ(t∗)·(T∗+D)}. CL,λ
tells two things, (1) the link rate is at least CL,λ, and (2) if
the link rate is CL,λ, then the buffer is at least CL,λD bytes.

In the SMT encoding, we only evaluate Eq. 6.2 over
intervals of length T∗=Rm. This is because the measurement
interval T∗ influences CCA’s probing behavior (see below and
Appendix E). The initial conditions (including initial beliefs)
are chosen by the verifier (§3). As a result, verifier’s initial
choice of T∗ influences the CCAs probing which should be
in full control of the CCA. Fixing T∗=Rm solves this issue.

Queue beliefs. For ease of discussion we define “probe inter-
val” as an interval that leads to increase in CL,λ using Eq. 6.2.
We show in Appendix E that probe intervals needs to be start

4Other intervals may produce a tighter Eq. 6.3 but we over-approximate.
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(CL,λD, CL,λ)

(
0, CL,λ

T∗+D
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)

slope = −1
T∗

β

C

L1

L2 qB − β

qB = CL,λ· (T + D) + α− CT

Prb 1 (T = T∗)

Prb 2 (T < T∗)

Figure 8: Belief set for CBR-delay (left). Queue buildup as
a function of C (right). L1, L2 lines are the belief constraints.

with a drained queue, otherwise, the CCA risks losing all pack-
ets in the queue at the beginning of the probe interval. For the
CCA to gauge the queue state, we add qU as an upper bound on
the bottleneck queue bytes. We compute it as: (bytes already
in queue)+(enqueued bytes)−(dequeued bytes on smallest
C). I.e., qU (t+δt)=max(0,qU (t)+(λ(t)−CL,λ(t))δt).

In summary, the template now includes inputs as CL,λ,
T∗=Rm, and qU . For brevity, we omit details on timeouts for
these beliefs.

How cc_probe_slow works. We discuss a generalized
version called cc_probe_slow_k. It drains queues until qU ≤α

(according to Listing 2). Then probes by sending CL,λ·(T∗+
D)+α bytes paced over T∗ time. α is a constant and T∗=kRm
is the interval length over which the CCA measures CL,λ. This
probe ensures (1) progress (beliefs shrink), i.e., causes losses,
qdel>D, or increases CL,λ; while ensuring (2) loss ≤2α.

Progress. The probe builds queues. On the network with
rate C, the queue build up is (enqueued bytes)− (dequeued
bytes)=CL,λ·(T∗+D)+α−C·T∗ (“Prb 1” illustrates this in
Fig. 8). On the network with rate CL,λ, the queue build up is
CL,λD+α (i.e., more than D seconds). If the CCA does not ob-
serve qdel>D, then it knows that C is higher than CL,λ, and the

line L1 (Fig. 8) moves up. I.e., CL,λ becomes
CL,λ·(T∗+D)+α

T∗+D =
CL,λ+

α

T∗+D >CL,λ. Likewise, if the CCA does not observe
loss, then L2 shifts right. If the CCA does observe qdel>D or
loss, then it knows that it sent above C and obtains an (implicit)
upper bound on C, ensuring a lower bound on utilization.

Loss. Loss due to the probe is ∆L = (bytes already in
queue)+(queue buildup)−(buffer)=q+qB−β. In Fig. 8, the
horizontal distance between a point (β,C) in the belief set
and the line Prb 1 shows qB−β. This distance, i.e., “CL,λ·(T∗+
D)+α−CT∗−β” is at most α (from Eq. 6.3). Bytes already in
the queue is also at most α as probe only happens when (q≤)
qU ≤α. Hence, ∆L≤2α, i.e., constant independent of C.

Also notice, if we probe over a shorter interval T <T∗, then
there are networks (β, C) for which qB−β is larger (Prb 2 in
Fig. 8) and loss on those networks is O(C). To avoid large loss,
the probing interval T needs to be at least as long as the past
measurement interval T∗ (Appendix E formally proves this).

cc_probe_slow steady-state behavior. In steady state,
cc_probe_slow follows a “Probe, Drain1, Drain2” cycle.
Table 3 shows the result of this cycle on two paths in the belief
set. These lie on the corners of belief set on the line L2 (Fig. 8).



Path Metrics Probe Drain1 Drain2
Duration

T∗ D=Rm D=Rm

Sent by CCA CL,λ·(T∗+D)+α α CL,λRm−2α

qU CL,λD+α 2α 0
Serviced1 CL,λT∗ CL,λD CL,λRm
Queue1 CL,λD 2α 0
Loss1 α 0 0P1

Util1 100% 100% 100%
Serviced2 CL,λ·(T∗+D) α CL,λRm−2α

Queue1 0 0 0
Loss2 α 0 0P2

Util2 100% ≈0% T∗
T∗+D ·100%

Table 3: Steady-state behavior of cc_probe_slow on two
extreme paths in the belief set: P1 = ⟨C = CL,λ,β = CL,λD⟩
and P1 = ⟨C = CL,λ

T∗+D
T∗ ,β = 0⟩. “Serviced” shows bytes

serviced by the CBR box, and qU is computed at the end of
the probe/drain duration. Note, for drain1, the CCA sends
packets due to line 7 of the template (Listing 1), even though
rate=CL,λ−qU/Rm<0.

Notice the two paths are very different, but CCA’s observations
are exactly the same. The loss is the same, and the delay box
can ensure RTTs are the same (as qdel≤D). In fact all paths
on the line joining P1 and P2 can produce CCA’s observations,
and form the steady-state belief set. Utilization is lowest on
P2 and highest on P1. The bandwidths of P1 and P2 differ by
a factor of T∗

T∗+D . To bound inflight on P1, CCA’s average
sending rate cannot be more than CL,λ, as a result, the average
utilization on P2 cannot be more than T∗

T∗+D . The only way to
increase utilization is to reduce uncertainty (size of belief set)
by increasing T∗. This also increases convergence time (e.g.
if the link rate increases when the CCA is in steady state).

If we replace α with f (CL,λ), where f (.) is the loss
allowance (§6.2). Then the resulting family of CCAs
(parameterized by f (.) and T∗) allows us to tune the tradeoff
between loss vs. convergence time vs. utilization. We can
even adapt these over time (Appendix H).

Discussion. The probe works as CBR-delay ensures that
if a probe did not cause loss in the past then repeating the
probe will not cause a loss. This is not true for CCAC due to
its non-deterministic token bucket filter (TBF). CCAC can
arbitrarily decide how many tokens to keep in the bucket. A
past probe may not have lost packets as the token bucket was
full. However, on repeating the probe, CCAC can choose to
keep the token bucket empty, and drop O(bucket) packets.
Due to this, we conjecture that either large losses cannot
be avoided for CCAC or will require asymptotically longer
convergence time (e.g., quadratic instead of linear in BDP).

6.3 Proofs of performance
Ensuring the under-specified synthesis invariant is not a suffi-
cient proof (§5.2). We summarize the lemmas that serve as the
proof of performance for CCA1 (cc_qdel) and CCA4 (cc_-
probe_slow). These represent CCAs designed for deep and
shallow buffers respectively. We give the full list and encoding

of lemmas in Appendix F. Note, we describe theoretical
worst-case bounds. Empirical performance is better (§6.4).

cc_qdel. On a CCAC link with parameters ⟨C,Rm,D =
Rm,β ≥ 3C·(Rm +D)⟩, cc_qdel ensures that beliefs become
consistent exponentially fast, they converge exponentially fast,
and it drains queue at a rate proportional to C.5 After beliefs
are consistent, converged, and the queue is drained, the CCA
is in steady state and remains in steady state. Note, this is
despite the periodic beliefs timeouts (§5.1.2), i.e., the beliefs
remain close to each other even after timing out. In steady
state (state IV in §5.2), cc_qdel gets at least 89% utilization,
keeps RTT ≤4.4(Rm+D) seconds, and loses at most 3 packets
in any Rm duration. Additionally, cc_qdel never incurs large
loss events when probing for bandwidth as long as the beliefs
are consistent, i.e., in states II, III, IV.

cc_probe_slow. On the CBR-delay model with parameters
⟨C,Rm,D,β⟩, cc_probe_slow ensures that beliefs (CL,λ, qU )
become consistent exponentially fast, and CL,λ converges addi-
tively. I.e., when the link rate decreases, cc_probe_slow ramps
down exponentially fast. When the link rate increases, cc_-
probe_slow ramps up additively. In steady state, cc_probe_-
slow ensures at least 30% utilization, keeps RTT ≤ 1.5(Rm+
D). It ensures that it loses at most 2 packets in any Rm dura-
tion whenever beliefs are consistent and the link rate has not
decreased. Note, in §6.2.1, we showed steady-state utilization
≥ T∗

T∗+D 100% = 50% (for T∗ = Rm = D). The proved worst-
case utilization is lower because CL,λ may reduce on timeouts.

6.4 Empirical evaluation
Our goal with empirical evaluation is to validate our mathemat-
ical modeling and proofs of performance. Further evaluation
is warranted before deployment.

Implementation. We implement CCA1 (cc_qdel) and
CCA4 (cc_probe_slow_k, see §6.2.1 for “_k”) over UDP
using [54]. For cc_probe_slow_k, we run cc_qdel until a
large loss event (resembling TCP slow start), and set α=5MSS
instead of 1MSS to account for false-negatives in loss detection.
As a result, probes may lose 2α=10MSS bytes.

We initially implemented the CCAs in the Linux kernel,
but found bugs in kernel’s pacing implementation and the
cong_control API to be insufficient (Appendix G). We
compare against Cubic, BBRv1 (Linux kernel v5.4.0),
BBRv2 [27], BBRv3 [28], and Copa [8, 54].

Scenarios and metrics. We use iperf to generate traffic and
mahimahi [48] to emulate scenarios with jitter and shallow
buffers (§2) with the aim of validating our performance proofs.
We measure utilization, delay, loss, and convergence time met-
rics under a variety of parameter ⟨C,Rm,D,β⟩ choices. Each tu-
ple constitutes a different “run”. We emulate jitter by injecting

5A CCA cannot drain the queue faster than this. Even if it stops sending
packets, the queue will only drain by C·t bytes in time t.
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Figure 9: Summary of utilization, queue, and loss. Right
subplot shows runs with β≤BDP. Additionally, for visibility,
we only show three CCAs, and use symlog scale on y-axis.

up to D=Rm seconds of uniformly random delay, while ensur-
ing FIFO service and constant average link rate (Appendix H).

Results. Fig. 9 summarizes utilization, queue (proxy for
delay), and losses across runs (e.g., each run gives us an
average utilization, and we compute the minimum across runs).
Appendix H shows the metrics for each run and also studies
convergence time and fairness. The synthesized CCAs are
within their proven performance bounds and achieve tradeoffs
between loss, convergence, utilization, and delay that prior
CCAs cannot achieve.

cc_probe_slow meets the proven lower bound on utiliza-
tion, upper bound on RTTs, and incurs at most constant loss
(independent of BDP) across buffer sizes, bandwidths and
propagation delays. On the same networks, Copa starves as
it is not robust to jitter [7]. BBRv1 is able to ensure utilization
despite random jitter, but incurs excessive losses (that increase
with the BDP) on shallow buffers. Cubic gets low utilization
when buffers are short (β≪BDP) and also bloats queues when
buffers are large (β≫BDP). cc_qdel’s performance is similar
to BBRv1, but with provable guarantees on utilization even
with worst-case jitter. Unlike BBRv1, the v2 and v3 variants
do not incur high losses on average but incur O(BDP) losses
to converge exponentially fast when the link rate increases
(Appendix H). They also get lower utilization than the v1
variant. cc_probe_slow_k gets higher utilization at the cost
of higher convergence time (Appendix H) with increasing k.

7 Related work
Our work extends [2], which introduced the concept of CCA
synthesis using CEGIS. We propose the belief framework to
make such synthesis far more practical and powerful. Related
work not covered in §2 can be classified into:

Automatic CCA design. Past works have explored online
learning [20], reinforcement learning [36, 43, 53], model
predictive control (MPC) [32, 35], and (partially observable)
markov decision process (POMDP) formulations [56]. CCAs
produced by these works are not human-interpretable or are
not explicitly designed for adversarial network behaviors.

CCmatic CCAs are modular, human-interpretable, and
provably robust under adversarial network behaviors.

Reasoning about CCAs. Past works use different network
models: (1) deterministic (e.g. fluid model) [18, 62], (2)
stochastic [30], and (3) non-deterministic [6]. Some also limit
their scope to a small class of CCAs [9, 18, 62]. Deterministic
models are easier to reason about but may not accurately reflect
real world behaviors. With stochastic models, it is hard to de-
duce probability distributions that characterize real networks.
Non-deterministic models do not require a distribution but may
be too adversarial. Beliefs can be computed regardless of the
modeling choice, and facilitate reasoning about complicated
network models across all possible CCAs. Beliefs and CC-
matic add to the emerging toolkit for performance reasoning.

8 Discussion, limitations, and future work
We built the belief framework allowing us to both (1) build
novel CCAs and (2) prove tradeoffs between objectives. Using
this, we built CCmatic to automatically synthesize CCAs for
different environment/objective combinations, alleviating hu-
mans from figuring out complex details like when/how long to
probe/drain. CCmatic also gives insights when objectives are
infeasible. Due to formal methods and program synthesis, CC-
matic CCAs are human-interpretable and provably performant.

While our work makes significant progress, it has several
limitations that, if addressed, would bring us closer to “solving
congestion control”. First, we focus on single-flow scenarios.
Designing provably fair CCAs will likely require a contract
between CCAs allowing them to disambiguate effects of jitter
from the actions of other flows. For instance, (1) flows could
agree on a mapping between delay (or delay variation) and their
sending rates [6], or (2) flows could agree on how much they
can increase or decrease their sending rate in a single RTT ([18],
Appendix H). Second, the CCAs synthesized for adversarial
noise perform reasonably on ideal links. This may not hold
as we explore other scenarios/objectives, and we may require
extensions for average-case analysis. Third, we only explore a
subset of belief-based CCAs due to computational limits. We
hope to use techniques like robust adversarial reinforcement
learning [50] and minimax [44] to improve design space explo-
ration, given our 2-player game formulation in Theorem 4.1.

We believe our methodology (i.e., inverting environment
models to build beliefs) is applicable to other domains where
environment models exist. E.g., adaptive bitrate (ABR) algo-
rithms and scheduling. ABR shares similar environments as
CCAs, and recent work has built models for scheduling [5, 26].

Acknowledgments
We would like to thank anonymous reviewers and our shepherd
Philip Brighten Godfrey for feedback that helped improve
our paper. This work was supported in part by NSF grants
CNS-2212102, and CNS-2212390.



References
[1] Alessandro Abate, Cristina David, Pascal Kesseli,

Daniel Kroening, and Elizabeth Polgreen. “Counterex-
ample Guided Inductive Synthesis Modulo Theories”.
In: Computer Aided Verification. Ed. by Hana Chockler
and Georg Weissenbacher. Cham: Springer Interna-
tional Publishing, 2018, pp. 270–288.

[2] Anup Agarwal, Venkat Arun, Devdeep Ray, Ruben
Martins, and Srinivasan Seshan. “Automating Network
Heuristic Design and Analysis”. In: Proceedings of
the 21st ACM Workshop on Hot Topics in Networks.
HotNets ’22. Austin, Texas: Association for Computing
Machinery, 2022, pp. 8–16.

[3] Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. “Data Center
TCP (DCTCP)”. In: Proceedings of the ACM SIG-
COMM 2010 Conference. SIGCOMM ’10. New Delhi,
India: Association for Computing Machinery, 2010,
pp. 63–74.

[4] Guido Appenzeller, Isaac Keslassy, and Nick McKe-
own. “Sizing Router Buffers”. In: Proceedings of the
2004 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications.
SIGCOMM ’04. Portland, Oregon, USA: Association
for Computing Machinery, 2004, pp. 281–292.

[5] Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit
Agarwal. “Formal Methods for Network Performance
Analysis”. In: 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). Boston,
MA: USENIX Association, Apr. 2023, pp. 645–661.

[6] Venkat Arun, Mohammad Alizadeh, and Hari Balakrish-
nan. “Starvation in End-to-End Congestion Control”.
In: Proceedings of the 2022 ACM SIGCOMM 2022
Conference. SIGCOMM ’22. Amsterdam, Netherlands:
Association for Computing Machinery, 2022.

[7] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed,
Mohammad Alizadeh, and Hari Balakrishnan. “Toward
Formally Verifying Congestion Control Behavior”. In:
Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference. SIGCOMM ’21. Virtual Event, USA: Associa-
tion for Computing Machinery, 2021, pp. 1–16.

[8] Venkat Arun and Hari Balakrishnan. “Copa: Practical
Delay-Based Congestion Control for the Internet”. In:
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). Renton, WA: USENIX
Association, Apr. 2018, pp. 329–342.

[9] D. Bansal and H. Balakrishnan. “Binomial conges-
tion control algorithms”. In: Proceedings IEEE IN-
FOCOM 2001. Conference on Computer Communi-
cations. Twentieth Annual Joint Conference of the

IEEE Computer and Communications Society (Cat.
No.01CH37213). Vol. 2. 2001, 631–640 vol.2.

[10] Anne Bouillard, Marc Boyer, and Euriell Le Corronc.
Deterministic Network Calculus: From Theory to Prac-
tical Implementation. John Wiley & Sons, 2018.

[11] Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj,
Mickael Randour, and Pierre Vandenhove. “Games
where you can play optimally with arena-independent
finite memory”. In: Logical Methods in Computer
Science 18 (2022).

[12] L.S. Brakmo and L.L. Peterson. “TCP Vegas: end to
end congestion avoidance on a global Internet”. In:
IEEE Journal on Selected Areas in Communications
13.8 (1995), pp. 1465–1480.

[13] Lloyd Brown, Yash Kothari, Akshay Narayan, Arvind
Krishnamurthy, Aurojit Panda, Justine Sherry, and
Scott Shenker. “How I Learned to Stop Worrying About
CCA Contention”. In: Proceedings of the 22nd ACM
Workshop on Hot Topics in Networks. HotNets ’23.
Cambridge, MA, USA: Association for Computing
Machinery, 2023, pp. 229–237.

[14] Carlo Caini and Rosario Firrincieli. “TCP Hybla: A
TCP Enhancement for Heterogeneous Networks”. In:
Int. J. Satell. Commun. Netw. 22.5 (Sept. 2004),
pp. 547–566.

[15] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. “BBR:
Congestion-Based Congestion Control”. In: ACM
Queue 14, September-October (2016), pp. 20–53.

[16] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, So-
heil Hassas Yeganeh, Ian Swett, Jana Iyengar, Victor
Vasiliev, Priyaranjan Jha, Yousuk Seung, and Van Ja-
cobson. BBR Congestion Control Work at Google IETF
101 Update. [Online; accessed 4. Mar. 2024]. Slides 4,
17. URL: https://datatracker.ietf.org/meeting/
101/materials/slides-101-iccrg-an-update-on-
bbr-work-at-google-00.

[17] Neal Cardwell, Yuchung Cheng, Soheil Hassas
Yeganeh, Ian Swett, and Van Jacobson. BBR Congestion
Control. [Online; accessed 26. Jun. 2023]. Mar. 2022.
URL: https://datatracker.ietf.org/doc/html/
draft-cardwell-iccrg-bbr-congestion-control-
02.

[18] Dah-Ming Chiu and Raj Jain. “Analysis of the increase
and decrease algorithms for congestion avoidance in
computer networks”. In: Computer Networks and ISDN
Systems 17.1 (1989), pp. 1–14.

[19] Edmund Clarke, Armin Biere, Richard Raimi, and Yun-
shan Zhu. “Bounded Model Checking Using Satisfia-
bility Solving”. In: Formal Methods in System Design
19.1 (July 2001), pp. 7–34.

https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02


[20] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten God-
frey, and Michael Schapira. “PCC: Re-architecting
congestion control for consistent high performance”.
In: 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15). 2015, pp. 395–
408.

[21] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan,
Yossi Gilad, Brighten Godfrey, and Michael Schapira.
“PCC Vivace: Online-Learning Congestion Control”.
In: 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). 2018, pp. 343–
356.

[22] Constantinos Dovrolis, Parameswaran Ramanathan,
and David Moore. “What do packet dispersion
techniques measure?” In: Proceedings IEEE INFO-
COM 2001. Conference on Computer Communica-
tions. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No.
01CH37213). Vol. 2. IEEE. 2001, pp. 905–914.

[23] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and
T. Roughgarden. “Routers with Very Small Buffers”.
In: Proceedings IEEE INFOCOM 2006. 25TH IEEE In-
ternational Conference on Computer Communications.
2006, pp. 1–11.

[24] Tobias Flach, Pavlos Papageorge, Andreas Terzis, Luis
Pedrosa, Yuchung Cheng, Tayeb Karim, Ethan Katz-
Bassett, and Ramesh Govindan. “An Internet-Wide
Analysis of Traffic Policing”. In: Proceedings of the
2016 ACM SIGCOMM Conference. SIGCOMM ’16.
Florianopolis, Brazil: Association for Computing Ma-
chinery, 2016, pp. 468–482.

[25] Hugo Gimbert and Wiesław Zielonka. “Games Where
You Can Play Optimally without Any Memory”. In:
CONCUR 2005 - Concurrency Theory. Berlin, Heidel-
berg: Springer-Verlag, 2005, pp. 428–442.

[26] Saksham Goel, Benjamin Mikek, Jehad Aly, Venkat
Arun, Ahmed Saeed, and Aditya Akella. Quantitative
Verification of Scheduling Heuristics. 2023. arXiv:
2301.04205 [cs.LO].

[27] Google. BBRv2. [Online; accessed 1. Aug. 2023]. URL:
https://github.com/google/bbr/tree/v2alpha.

[28] Google. BBRv3. [Online; accessed 14. Sep. 2023].
URL: https://github.com/google/bbr/tree/v3.

[29] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mo-
hammad Alizadeh, and Hari Balakrishnan. “ABC: A
Simple Explicit Congestion Controller for Wireless Net-
works”. In: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 353–
372.

[30] Prateesh Goyal, Mohammad Alizadeh, and Thomas
E. Anderson. Optimal Congestion Control for Time-
varying Wireless Links. 2022. arXiv: 2202 . 04321
[cs.NI].

[31] Sangtae Ha, Injong Rhee, and Lisong Xu. “CUBIC:
A New TCP-Friendly High-Speed TCP Variant”. In:
SIGOPS Oper. Syst. Rev. 42.5 (July 2008), pp. 64–74.

[32] Cunwu Han, Dehui Sun, Lei Liu, and Song Bi. “A
new robust model predictive congestion control”. In:
Proceeding of the 11th World Congress on Intelligent
Control and Automation. IEEE. 2014, pp. 4189–4193.

[33] Tom Henderson, Sally Floyd, Andrei Gurtov, and Yoshi-
fumi Nishida. RFC 6582: The NewReno Modification to
TCP’s Fast Recovery Algorithm. [Online; accessed 15.
Aug. 2023]. Apr. 2012. URL: https://datatracker.
ietf.org/doc/html/rfc6582.

[34] Janey C. Hoe. “Improving the Start-up Behavior of a
Congestion Control Scheme for TCP”. In: Conference
Proceedings on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications.
SIGCOMM ’96. Palo Alto, California, USA: Associa-
tion for Computing Machinery, 1996, pp. 270–280.

[35] Amjad J Humaid, Hamid M Hasan, and Firas A Ra-
heem. “Development of model predictive controller for
congestion control problem”. In: feedback 2 (2014),
p. 3.

[36] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael
Schapira, and Aviv Tamar. “A deep reinforcement learn-
ing perspective on internet congestion control”. In: In-
ternational Conference on Machine Learning. PMLR.
2019, pp. 3050–3059.

[37] Leslie Pack Kaelbling, Michael L Littman, and Anthony
R Cassandra. “Planning and acting in partially observ-
able stochastic domains”. In: Artificial intelligence
101.1-2 (1998), pp. 99–134.

[38] Samuel Kolb, Stefano Teso, Andrea Passerini, and Luc
De Raedt. “Learning SMT(LRA) Constraints Using
SMT Solvers”. In: Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence. IJ-
CAI’18. Stockholm, Sweden: AAAI Press, July 2018,
pp. 2333–2340.

[39] K. Lai and M. Baker. “Measuring bandwidth”. In: IEEE
INFOCOM ’99. Conference on Computer Communi-
cations. Proceedings. Eighteenth Annual Joint Con-
ference of the IEEE Computer and Communications
Societies. The Future is Now (Cat. No.99CH36320).
Vol. 1. 1999, 235–245 vol.1.

[40] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik

https://arxiv.org/abs/2301.04205
https://github.com/google/bbr/tree/v2alpha
https://github.com/google/bbr/tree/v3
https://arxiv.org/abs/2202.04321
https://arxiv.org/abs/2202.04321
https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc6582


Westin, Raman Tenneti, Robbie Shade, Ryan Hamil-
ton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.
“The QUIC Transport Protocol: Design and Internet-
Scale Deployment”. In: Proceedings of the Conference
of the ACM Special Interest Group on Data Commu-
nication. SIGCOMM ’17. Los Angeles, CA, USA:
Association for Computing Machinery, 2017, pp. 183–
196.

[41] Jean-Yves Le Boudec and Patrick Thiran. Network
calculus: a theory of deterministic queuing systems for
the internet. Springer, 2001.

[42] Jean-Yves Le Boudec and Patrick Thiran. Network
calculus: a theory of deterministic queuing systems for
the internet. Vol. 2050. Springer Science & Business
Media, 2001.

[43] Wei Li, Fan Zhou, Kaushik Roy Chowdhury, and
Waleed Meleis. “QTCP: Adaptive congestion control
with reinforcement learning”. In: IEEE Transactions on
Network Science and Engineering 6.3 (2018), pp. 445–
458.

[44] G.F. Luger. Artificial Intelligence: Structures and
Strategies for Complex Problem Solving. Pearson
Addison-Wesley, 2009.

[45] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and
Teunis Ott. “The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm”. In: SIGCOMM
Comput. Commun. Rev. 27.3 (July 1997), pp. 67–82.

[46] Tong Meng, Neta Rozen Schiff, P Brighten Godfrey,
and Michael Schapira. “PCC proteus: Scavenger trans-
port and beyond”. In: Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data
Communication on the applications, technologies, ar-
chitectures, and protocols for computer communication.
2020, pp. 615–631.

[47] Leonardo de Moura and Nikolaj Bjørner. “Z3: An
Efficient SMT Solver”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by C. R.
Ramakrishnan and Jakob Rehof. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 337–340.

[48] Ravi Netravali, Anirudh Sivaraman, Somak Das,
Ameesh Goyal, Keith Winstein, James Mickens, and
Hari Balakrishnan. “Mahimahi: Accurate Record-and-
Replay for HTTP”. In: 2015 USENIX Annual Techni-
cal Conference (USENIX ATC 15). Santa Clara, CA:
USENIX Association, July 2015, pp. 417–429.

[49] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim
Kurose. “Modeling TCP Throughput: A Simple Model
and Its Empirical Validation”. In: Proceedings of the
ACM SIGCOMM ’98 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’98. Vancouver, British

Columbia, Canada: Association for Computing Ma-
chinery, 1998, pp. 303–314.

[50] Lerrel Pinto, James Davidson, Rahul Sukthankar, and
Abhinav Gupta. “Robust Adversarial Reinforcement
Learning”. In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by Doina Precup
and Yee Whye Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, Aug. 2017, pp. 2817–2826.

[51] Armando Solar-Lezama, Christopher Grant Jones, and
Rastislav Bodik. “Sketching Concurrent Data Struc-
tures”. In: SIGPLAN Not. 43.6 (June 2008), pp. 136–
148.

[52] K. Tan, J. Song, Q. Zhang, and M. Sridharan. “A Com-
pound TCP Approach for High-Speed and Long Dis-
tance Networks”. In: Proceedings IEEE INFOCOM
2006. 25TH IEEE International Conference on Com-
puter Communications. 2006, pp. 1–12.

[53] Chen Tessler, Yuval Shpigelman, Gal Dalal, Amit Man-
delbaum, Doron Haritan Kazakov, Benjamin Fuhrer,
Gal Chechik, and Shie Mannor. “Reinforcement Learn-
ing for Datacenter Congestion Control”. In: SIGMET-
RICS Perform. Eval. Rev. 49.2 (Jan. 2022), pp. 43–
46.

[54] venkatarun95. genericCC. [Online; accessed 9. Jun.
2023]. URL: https://github.com/venkatarun95/
genericCC.

[55] Curtis Villamizar and Cheng Song. “High performance
TCP in ANSNET”. In: ACM SIGCOMM Computer
Communication Review 24.5 (1994), pp. 45–60.

[56] Keith Winstein and Hari Balakrishnan. “TCP Ex
Machina: Computer-Generated Congestion Control”.
In: Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM. SIGCOMM ’13. Hong Kong,
China: Association for Computing Machinery, 2013,
pp. 123–134.

[57] Keith Winstein, Anirudh Sivaraman, and Hari Balakr-
ishnan. “Stochastic Forecasts Achieve High Through-
put and Low Delay over Cellular Networks”. In: 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). Lombard, IL: USENIX
Association, Apr. 2013, pp. 459–471.

[58] Dongpeng Xu, Binbin Liu, Weijie Feng, Jiang Ming,
Qilong Zheng, Jing Li, and Qiaoyan Yu. “Boosting
SMT solver performance on mixed-bitwise-arithmetic
expressions”. In: PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language
Design and Implementation, Virtual Event, Canada,
June 20-25, 2021. Ed. by Stephen N. Freund and Eran
Yahav. ACM, 2021, pp. 651–664.

[59] Lisong Xu, K. Harfoush, and Injong Rhee. “Binary
increase congestion control (BIC) for fast long-distance

https://github.com/venkatarun95/genericCC
https://github.com/venkatarun95/genericCC


networks”. In: IEEE INFOCOM 2004. Vol. 4. 2004,
2514–2524 vol.4.

[60] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Ragha-
van, Riad S. Wahby, Philip Levis, and Keith Winstein.
“Pantheon: the training ground for Internet congestion-
control research”. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 18). Boston, MA: USENIX
Association, July 2018, pp. 731–743.

[61] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshmi-
narayanan Subramanian, and Carmelita Görg. “Adap-
tive Congestion Control for Unpredictable Cellular Net-
works”. In: Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication.
SIGCOMM ’15. London, United Kingdom: Associa-
tion for Computing Machinery, 2015, pp. 509–522.

[62] Doron Zarchy, Radhika Mittal, Michael Schapira, and
Scott Shenker. “Axiomatizing Congestion Control”.
In: Proc. ACM Meas. Anal. Comput. Syst. 3.2 (2019),
33:1–33:33.

[63] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. “Congestion Control for Large-Scale RDMA
Deployments”. In: Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communi-
cation. SIGCOMM ’15. London, United Kingdom:
Association for Computing Machinery, 2015, pp. 523–
536.

A Beliefs are sufficient
LEMMA A.1. The set of feasible actions that the network is
allowed to take in the future can be determined by the belief set.

Proof. Recall, the only rule in our game is that the sequence
of network’s actions should be allowed by some path in the
network model. As a result, a network action is feasible if and
only if the sequence of past actions combined with the network
action is allowed by some path in the network model. We
will show that the network can compute the set of all feasible
actions using the belief set.

We argue that the set of feasible actions is the set of actions
that are allowed by some ⟨path,state⟩ tuple in the belief set.
First, if an action A is allowed on path P , and state S from the
belief set. Then all the past network actions are allowed by path
P (as P is in the belief set, and a path is in the belief set if all
past actions can be explained by it). So the sequence of actions,
including past and A , is consistent with the path P , hence
A is a feasible action. Second, if an action A is not allowed
on any ⟨path,state⟩ tuple in the belief set, then it cannot be a
feasible action as the sequence of past actions and A cannot
be explained by any single path in the network model.

NaCa

Na

Ca

(a) Game tree T .

Bn0 Bc1
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Ca Na
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(b) Condensed graph G .

Figure 10: Constructing condensed graph from game tree.

LEMMA A.2. Belief set for a future time can be computed by
the belief set at the current time and the CCA’s observations
between the current and future times.

Proof. We compute the future belief set as follows. Enumerate
all tuples in the current belief set. Filter out the tuples that
cannot produce the trace of CCA’s observations between the
current and future times. Filtering can be done by replaying
the CCA’s sending rate choices on the tuple, and checking
if the tuple has feasible network actions that produce the
exact observations of the CCA. The set of remaining tuples
is same as the future belief set (as if it were computed using
the entire history of CCA’s observations). This is because
a tuple is in the remainder set iff it can produce both (1) all
CCA’s observations till now (as it is in current belief set) and
from now to the future time (as it was not filtered out).

THEOREM. If there exists a deterministic CCA that ensures
a given performance property, on a given network model, then,
there exists a belief-based CCA that ensures the performance
property on the network model. Where, the beliefs are derived
from the given network model, and the performance property
is defined as a boolean valued function of the belief set and
the action taken by the CCA on that belief set.

Proof. We construct a belief-based CCA (AB ) by inspecting
the executions of the given deterministic CCA (AD ), and show
that AB ensures the given performance property (P f ).

Preliminaries. An execution (or trace) is a sequence
of CCA actions (Cai) and network actions (Nai), e.g.,
⟨Ca1,Na1,Ca2,Na2,...⟩. We say that an execution is valid if it
conforms to the rules of the game, i.e., the sequence of network
actions correspond to some path in the network model.

We annotate each step of the execution by the beliefs
computed over the entire history until that step, e.g., the
belief set is Bci after Cai, and Bni after Nai. At the start of
all traces, the belief set is Bn0. The annotation looks like:
⟨|Bn0Ca1|Bc1Na1|Bn1Ca2|Bc2Na2|Bn2 ...⟩.

The performance property is defined as a function P f
that maps ⟨Belief, CCA action⟩ (e.g., ⟨Bn, Ca⟩) to True or
False. While in §5.2 and §6.3, we do not directly state the
performance properties this way, we show that they can be
defined this way at the end of the proof.



Construction. The high level summary of the construction
is that AB can arbitrarily pick one CCA action (sending rate
choice) whenever AD takes different actions on the same
belief set. As a result, AB is a pure function of belief set (it
does not take different actions on the same belief). First, we
will show that AB function is well-defined i.e., it assigns a
rate choice to each belief Bn that it can witness in an execution.
We will show this is because AB only ever reaches a belief set
Bn if AD reached it. We will use Lemma A.2 and Lemma A.1
to show this. Second, we will show that AB satisfies the
performance property because it only takes an action Ca on
Bn if AD took it and so P f (⟨Bn,Ca⟩) evaluates to true for AB
as it evaluated true for AD .

We consider the set of all executions of AD on the given
network model. We visualize them in the form of a (directed)
game tree T (Fig. 10a). The nodes in T are placeholders.
A unique node includes the entire history of the CCA and
network actions until the node. If it is the turn of the CCA to
play, the node has an outgoing edge labelled with the CCA
action Ca. If it is the network’s turn to play, the node has
outgoing edges corresponding to all feasible network actions,
each labelled with a network action Na. We label each node in
the tree with the belief set computed over the history of actions
until the node. We get two kinds of labels, (1) beliefs after
CCA action (Bc), and (2) beliefs after network action (Bn).

From the tree, we construct a condensed graph G (Fig. 10b)
as follows. Within each label type, we merge the nodes that
have the same belief value (i.e., if two nodes have labels BnI ,
BnII , with BnI = BnII , we coalesce the nodes). Likewise for
BcI =BcII . Note, we do not merge nodes with different label
types even if they have the same belief value. Then for each
node with a Bn label type (i.e., CCA’s turn to play), we just
keep one outgoing edge (arbitrarily) resembling the CCA
action that AB takes on that belief value.

Note, in our construction of G , we never remove edges corre-
sponding to network actions, and all edges (both CCA and net-
work actions) have the same destination node label in T and G .

AB is the desired belief-based CCA. With the above
construction, we will argue that (1) AB is well-defined, i.e.,
it assigns an action (outgoing edge) to each belief set that it
can reach (ever witness in any execution), and (2) all actions
of AB satisfy the performance property.

AB is well-defined. AB assigns a rate choice (CCA action)
to each belief set that it can witness under the network model.
We prove by contradiction. Say there is a valid execution e pro-
duced by AB that reaches a belief set Bni for which AB never
assigns an action, andBni is the first such belief in the execution.
AB does not define an action for Bni in two cases, (1) Bni is not
in G , and (2) Bni is in G but does not have an outgoing edge.

Case 1. We know Bni ̸=Bn0 because Bn0 is in G (it is the root
node of T , and we do not remove any nodes when constructing
G). As a result, e looks like ⟨··· |Bni-1Cai|BciNai|Bni⟩, where,
Bni-1 is in G .

Since AB produced e, AB took action Cai on the belief Bni-1,
i.e., Cai is the outgoing edge for node Bni-1 in G . AB only takes
this action, if AD took this action on a node with label Bni-1.
We argue that in T , this action leads to a node with label Bci.
This comes from Lemma A.2, AD could have arrived from any
history at the belief Bni-1, but taking the action Cai on Bni-1
updates the belief to Bci no matter the history. Thus, from our
construction, Bci also exists in G and is the destination node on
the edge Cai (as we do not remove nodes in the construction and
the destination node labels are same in G and T for each edge).

Now, we argue that in T , Nai is an outgoing edge for the
node with label Bci. This is because according to e, Nai is
a feasible network action on the belief Bci, as a result Nai is
a feasible action on the node with label Bci independent of
history in T that led to this node (from Lemma A.1). Since
the game tree describes all executions of AD , each node with
label type Bc has an edge for each feasible network action,
so T has an edge with action Nai on the node with label Bci.
Again from Lemma A.2, Nai takes belief from Bci to Bni in T .

Since Bci, Nai and Bni exist in T , they also exist in G . And
in G , Nai points from Bci to Bni, and Cai points from Bni-1 to
Bci. This is because we never remove any edges corresponding
to network actions, nor do we remove any nodes, and the
destination nodes have same labels in T and G . Since Bni
exists in G , we arrive at a contradiction.

Case 2. Bni exists in G only if it exists in T . All nodes with
label type Bn have a CCA action in T . So Bni has an action
in T . In constructing G , we never remove all edges for a node
with label type Bn, so we will keep at least one outgoing edge
(action) for Bni. This is a contradiction.

AB satisfies P f . Recall, P f is defined as a function of
⟨Bn,Ca⟩. From our construction, AB takes an action Ca on Bn
only if G has edge Ca on Bn. This happens only if T has such
and edge which happens only if AD takes Ca on Bn. Since,
AD satisfies the performance property, P f (⟨Bn,Ca⟩) = True.
Hence, all of AB ’s actions satisfy the performance property.

Performance properties in §5.2 and §6.3 can be expressed
as a boolean valued function of belief set and CCA’s
action on that belief set. At a high level, our performance
properties dictate that the CCA (1) ensures some bounds
on metrics like loss, delays, and utilization, and (2) makes
progress. We show how both these can be expressed as a
function of belief and CCA action.

We can compute delays, losses, and utilization for each
tuple in the belief. The tuple tells us the starting queue, link
rate, and buffer; and the CCA action tells us the sending rate.
We can use this to calculate if the sending rate choice inflates
delays or causes losses (e.g., using dq

dt =(λ(t)−C)+, where
(x)+ = max(0,x)). Likewise, we can compute if the link is
utilized during the action using starting queue, link rate and
the sending rate choice. If the CCA violates the delay, loss,
utilization bounds on any tuple then the property evaluates to



False on the ⟨belief,CCA action⟩ pair, otherwise the property
evaluates to True.

For progress, there are two types, (1) shrinking beliefs, and
(2) stabilizing queue. For the first, we can check if an action
can lead to shrinking beliefs by emulating all valid network
actions. The CCA makes progress only if the beliefs shrink
no matter the network action. For the second, the queue state
is present in the belief tuple, and we can compute how the rate
choice and link rate in the tuple will change the queue; and
determine whether the queue will stabilize.

Note, our proof does not hold for arbitrary safety properties
defined as boolean valued function over the entire execution.
For instance, an arbitrary safety property might require that
every time a CCA sends at rate 10 Mbps, in the next RTT it
must send at 20 Mbps. Since we change the specific decisions
that AB makes compared to AD , such a safety property can
be violated.

Also, note that we cannot express our performance
properties solely as a function of the belief set. For example,
the belief set does not tell us if the CCA will cause loss on
an action, and we need to know the CCA’s action on a belief
set to evaluate loss. This is different from chess where the
winning condition is just a function of the board state. Thus,
Theorem 4.1 is non-obvious [11, 25].

B Computing beliefs

B.1 Propagation delay and jitter
We assume that the CCA knows Rm and D. Due to discretiza-
tion of time in the SMT encoding, all quantities with units of
time are integer multiples of the discretization interval. The
time for synthesis and verification scales with the number of
intervals considered (§6.1). To cover as many RTTs in as few
intervals as possible, we set Rm = D = 1 interval. As a result
the constant value 1 reveals Rm and D in the templates.

This is a non-issue as jitter inherently creates uncer-
tainty in RTTs. CBR-delay with parameters ⟨Rm, D⟩ can
emulate parameters ⟨Rm

′, D′⟩ as long as Rm
′ ≥ Rm and

Rm
′+D′≤Rm+D. Now, say the actual network parameters

are ⟨Rm
a, Da⟩. From the first RTT measurement we set

Rm = RTT ∈ [Rm
a,Rm

a+Da] (as there are no other flows, so
no queuing). At this point, we run the CCA designed for
⟨Rm,D=Rm⟩ and get the performance guarantees for ⟨Rm,D⟩
as long as Da ≤Rm+D−Rm

a. If some future RTT ′ is <Rm,
we update Rm=RTT ′ and repeat our argument, this time with
better performance guarantees as Rm is closer to Rm

a. E.g., if
we guarantee q≤Rm for ⟨Rm,D⟩, then on the actual network
we guarantee q≤Rm≤Rm

a+Da and our guarantee improves
as Rm

a−Rm decreases. Same reasoning holds for CCAC.
In summary, we run the CCA designed for ⟨Rm =

minRTT,D = minRTT⟩ and get the guarantee we promised
for the network ⟨minRTT,minRTT⟩, when we are actually
running on the network ⟨Rm

a,Da⟩. We get these guarantees as
long as Da≤2minRTT , which is true if the real network can be

Listing 3: CCAC constraints on S

S(t)≤TA(t)=SU (t) (B.1)
S(t)≤A(t)−L(t) (B.2)
S(t)≥TA(t−D)=SL(t) where, (B.3)
TA(t)=C·t−W(t) (B.4)
q(t)≥0 =⇒ W ′(t)=0 (B.5)
q(t)=A(t)−L(t)−TA(t) (B.6)

TA(t) – cumulative tokens (in units of bytes) admitted
q(t) – inst. bytes in the bottleneck queue
W(t) – cumulative tokens (in units of bytes) wasted
L(t) – cumulative bytes lost

captured by the CBR-delay model with parameters Da≤Ra.

B.2 Bandwidth
We show the analytical derivation of the link rate belief bounds
(CL and CU ) for the CCAC model. Before that we briefly
give relevant background on CCAC (for detailed background
please see [7]).

Background on CCAC. CCAC models the network as a gen-
eralized token bucket filter. It puts constraints (Listing 3) on
how the network serves packets (i.e., S(t), service curve, or cu-
mulative bytes serviced by time t), based on how packets arrive
into the network (i.e., A(t), cumulative bytes arrived by time t).

Tokens arrive at rate C bytes/secs, i.e., C·t tokens arrive
by time t. On a token arrival, the network decides whether
to admit it or waste it (Eq. B.4). The network uses admitted
tokens to send packets, so the packets sent are upper bounded
by the number of admitted tokens (Eq. B.1). Also, the network
cannot send more bytes than arrived but not lost (Eq. B.2).

To emulate non-congestive jitter, the network can choose
to delay sending packets even when tokens are available. To
ensure jitter is bounded, all tokens must be used within D
seconds, and the network should only admit a token if it knows
it will be used within D seconds.6 This puts a lower bound on
service (Eq. B.3).

Additionally, to prevent the network from wasting all
the tokens, tokens cannot be wasted when there are packets
waiting for tokens, i.e., there are packets that have arrived
(but not lost) and do not have corresponding admitted
tokens (Eq. B.5 and Eq. B.6). These packets are put into a
queue, and they build congestive delays. Other packets that
have corresponding tokens but have not been delivered as
considered as facing non-congestive delays.

Analytical derivation. CCAC visualizes its constraints
using graphs like Fig. 11. From such graphs, we can determine
the minimum and maximum average ACK rate (r) that a CCA

6Due to non-determinism, the network can look into the future to make
these decisions.



0D 1D 2D 3D Time

0CD

1CD

2CD

3CD

B
yt

es

SU

SL

Feasible
behaviorsT = 1D, rL = 0C

1

T = 1D, rU = 2C
1

T = 2D, rL = 1C
2

T = 2D, rU = 3C
2

T = 3D, rL = 2C
3

T = 3D, rU = 4C
3

Figure 11: Computing ACK rate range based on C. ACK
rate is the slope of the lines. Over different time intervals
(T), the lines show feasible service curves with the maximum
(rU ) and minimum (rL) slopes. Service curves need to be
non-decreasing and lie in the shaded region.

CL CH C

r

C(T +D)
T

C(T−D)
T

λ ≥ C Feasible
behaviors

CL C

r

CH =∞
C(T +D)

T

λ(T−D)
T

λ < C

Figure 12: Inverting bounds on observations to get bounds on
network parameters. For observed ACK rate, draw horizontal
line (red dashed line) corresponding to the observed ACK
rate r, the points intersecting with the feasible region give the
range of link rates [CL,CU ] that could have produced r.

can get for different λ and C choices. Specifically, consider
the case when λ ≥ C. In this case, tokens cannot be wasted
(W ′=0). As a result SL and SU have slope C, and the network
has to ensure that at all times S is between the SL and SU
lines. We look at different feasible choices of S, and find the
maximum and minimum slope of S (ACK rate) over time
intervals of different lengths. Note, we are interested in the
“average” ACK rate over the intervals, so we look at the slope
of the line joining the start and end points of the interval.

Fig. 11 shows different feasible S curves along with
minimum and maximum slopes in different intervals. For
example, over an interval of length D, r ∈ [0,C]. Similarly,
r ∈ [C/2,3C/2] for 2D long intervals, r ∈ [2C/3,4C/3] for
3D long intervals. For kD long intervals, r ∈ [ k−1

k C, k+1
k C].

Following a similar exercise, we find that for intervals with
length T , r ∈ [C(T−D)

T , C(T+D)
T ]. I.e., S follows an ideal link

with rate C with an additional burst or delay of CD bytes.

We repeat this for the case when λ<C. Here, we consider
two extreme cases: (C1) SL, SU have slope λ, and (C2) SL,
SU have slope C. The first case corresponds to the network
wasting tokens because packets arrive slower than tokens,
and the second corresponds to a large queue build up at time
t=0 preventing the network from wasting tokens. When we

inspect the graphs (not shown, similar to Fig. 11), we find that
over intervals of length T , r∈ [λ(T−D)

T ,λ(T+D)
T ] in case C1, and

r∈ [C(T−D)
T ,C(T+D)

T ] in case C2. When we look at other cases
between C1 and C2, i.e., SL and SU take slopes in the range
[λ,C], we get more feasible values of r. Taking the union of
all the r ranges, we find that in any T long interval, whenever
λ<C, r∈ [λ(T−D)

T ,C(T+D)
T ].

We invert the bounds on r to get bounds on C. Fig. 12
illustrates this. Specifically, when λ>C, we have, ∀T:

C·(T−D)

T
≤r≤ C·(T+D)

T
On rearranging, we get:

r·T
T+D

≤C≤ r·T
T−D

(B.7)

Likewise, when λ<C, we have, ∀T:
λ·(T−D)

T
≤r≤ C·(T+D)

T
On rearranging, we get:

r·T
T+D

≤C (B.8)

From Eq. B.7 and Eq. B.8, we get:

C≥max
T

r·T
T+D

=CU and C≤min
T

r·T
T−D

=CL

Where CU can only be computed over intervals where λ>C.
The CCA can compute CL and CU as defined. r can be mea-

sured directly by the CCA. The CCA can also infer if λ(t)>C
at all time steps t in an interval if (qdelL(t)>0)∨(L′(t)>0) for
all time steps t in the interval. We checked that this condition
holds by querying CCAC if C > CU can happen when we com-
pute CU over intervals where (qdelL(t)> 0)∨ (L′(t)> 0) is
true. CCAC returned UNSAT implying that C has to be ≤CU .

C Synthesis details
For completeness, we describe the workings of the generator
and verifier in CEGIS (§5). For ease of understanding, we
interpret the search (or program synthesis) problem as a ∃∀
formula [1]. For instance, “does there exist a belief-based
CCA, such that forall traces captured by the network model,
the CCA ensures the desired performance properties”. More
formally, the formula is:

∃ ? ∀trace (CCA∧Network) =⇒ Performance (C.1)
? and trace represent vector of variables. ? are the holes

in the CCA template (Listing 1). Assigning value to the holes
produces a concrete CCA. A trace (timeseries) describes the
execution of the CCA under the network model. It is specified
using the dimensions of the network model’s relation (§3),
e.g., path, feedback, CCA actions. In our case, the trace
includes variables like C, β, Rm, D, rate(t), A(t), S(t), L(t),
TA(t), W(t) (Table 1, Listing 3).

The CCA, Network, and Performance are boolean valued
SMT formulas (in the theory of linear real arithmetic
(LRA) [38]) over the ? and trace variables. CCA ensures that
the congestion control decisions are made according to the



CCA. It encodes that the rate(t) variables are assigned using
the values of ? and trace variables according to the CCA
template. We produce this encoding by symbolically executing
the CCA template. Network encodes what assignments to the
trace variables result in executions that are deemed feasible
according to the network model. These look like Listing 3.
We also encode belief computations (§5.1.1) and timeouts
(§5.1.2) in Network, these constraints merely populate the
belief bounds and don’t affect the actions that the network
takes. Performance encodes the desired objectives using the
transition system. We use the synthesis invariants (Eq. 5.3)
to specify Performance.

The formula can be read as “does there exist an assignment
to the holes in the template such that for all traces, if the packets
are sent according to the CCA and the service/delay/loss
decisions are made according to the network model, then the
trace satisfies the desired performance properties”.

Verifier operation. For a given CCA (i.e., value of ? ),
the verifier produces a counterexample trace by solving the
formula:

? =value of ? ∧CCA∧Network∧¬Performance (C.2)
This is a quantifier-free formula (i.e., no ∃ or ∀ quantifiers).
The verifier uses an SMT solver (e.g., Z3 [47]) to solve this
formula. This is a formula on the trace variables (as the
? variables have been substituted by fixed values). The
assignment to the trace variables describes a trace where
the given CCA violates the performance properties on the
network model. If the formula is unsatisfiable, then there is
no counterexample that breaks the CCA.

Generator operation. Given a set of counterexample traces
(say X), the generator solves the following formula to propose
a new candidate CCA:∧

trace∈X
(CCA∧Network) =⇒ Performance (C.3)

This is a formula on the ? variables (as the trace variables
have been substituted by concrete counterexamples from
the set X). The assignments to the ? variables that satisfy
the formula are those on which either the trace is no longer
feasible according to the CCA/network model, or it satisfies
the performance properties.

Note, in this formulation, only CCA depends on the holes,
the Network and Performance only depend on the trace
variables. On each trace in X, Network evaluates to True and
Performance evaluates to False (as the trace was generated
by the verifier by satisfying “··· ∧ Network∧ Performance”).
As a result, Eq. C.3 simplifies to:∧

trace∈X
¬CCA (C.4)

Effectively, the new candidate should not produce the exact
same trace of rate choices as made by the prior candidate
CCAs. So all the CCAs that have the same buggy control flow
exploited by the counterexample trace are pruned from the
search space.

D Loss vs. convergence tradeoffs
Tradeoff theorem and proof. For ease of understanding, we
show the proof for a CCA trying to ramp up its rate from 0 to
the link rate C, while trying to avoid large loss events. Later
we generalize this to CCA trying to ramp up from arbitrary
C0 to C, while trying to risk at most O( f (C)) losses for some
function f (.).

THEOREM. For an end-to-end deterministic CCA running on
a CBR-delay network with parameters ⟨C,Rm,D,0<β≤CD⟩,
to avoid getting arbitrarily low utilization, the CCA must either
(1) cause ω(1) packet loss, i.e., losses that increases with C,
or (2) take Ω(C(Rm+β/C)) time to converge to the link rate.

Proof. We will first show that under the parameters of the
proof, i.e., β ≤ CD, the CCA must cause loss to avoid
arbitrarily utilizing the link (Step 1.). Then we compute a tight
lower bound belief for C, under the CBR-delay link (our prior
belief computations were for CCAC) (Step 2.). This allows
us to compute the amount of loss the CCA risks any time it
tries to probe for bandwidth (Step 3.). If we restrict this risk of
loss to a constant independent of C, it gives us a constraint on
how quickly the CCA can ramp up, giving us a lower bound
on the convergence time (Step 4.).

For the proof, we assume the CCA knows Rm, D, and βs. βs
is the seconds of queueing that the buffer can tolerate (i.e., β/C).
Knowledge of these quantities only makes the proof stronger.
If CCAs need to respect the tradeoff with the knowledge, then
they also need to respect it without the knowledge. Note, cc_-
probe_slow meets the theorem bounds without knowing βs.

Step 1. Since βs ≤ D, the CCA must cause loss to avoid
arbitrarily low utilization. This immediately follows from
Theorem 2 of [6], i.e., to avoid arbitrarily low utilization, the
CCA must cause more than D queueing delay. If the buffer
size is ≤ D seconds, the CCA will have to cause loss. For
completeness, we repeat the proof in Appendix D.1.

Step 2. Until the time that loss happens, we compute the
set of paths (link rates) that the CCA could be running on
given its observations. If the CCA has not seen a loss event by
time t∗, then the CCA never over-flowed the buffer until time
t∗−RTT(t∗). I.e., in any time interval before t∗−RTT(t∗)7,
the net bytes enqueued and the net bytes dequeued differ by
at most β. I.e., ∀t1,t2, such that, 0≤ t1≤ t2≤ t∗−RTT(t∗):∫ t2

t1
λ(s)ds−C·(t2−t1)≤β

Substituting β = Cβs and rearranging, we get, ∀t1, t2.
0≤ t1≤ t2≤ t∗−RTT(t∗):

C≥
∫ t2

t1 λ(s)ds

t2−t1+βs

7Note, the CCA only knows what happened in the network one RTT ago.
At time t, the CCA has no information about what may have happened in the
network during the time interval (t−RTT(t),t].
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Figure 13: CL,λ puts constraints on
∫ T

λ(s)ds, and
∫ T

λ(s)ds
puts constraints on CL,λ. Over the intervals, the red and blue
values show the maximum value of

∫ T
λ(s)ds and CL,λ respec-

tively. The green arrows show the constraint dependencies.
I.e., CL,λ in [kRTT,(k+1)RTT) puts constraints on

∫ T
λ(s)ds

in [kRTT,(k+ 1)RTT) and
∫ T

λ(s)ds in [kRTT,(k+ 1)RTT)
puts constraints on CL,λ in [(k+1)RTT,(k+2)RTT).

Based on this we define CL,λ as:

CL,λ(t
∗)= max

0≤t1≤t2≤t∗−RTT(t∗)

∫ t2
t1 λ(s)ds

t2−t1+βs
(D.1)

The set of paths that can produce the trace up to t∗ is {⟨C =
C∗,β = C∗βs⟩|C∗ ≥ CL,λ(t)}. The CCA could be running
on any of these paths, and it needs to ensure its performance
properties no matter which of these paths it is running on.

Step 3. On the path ⟨C∗,C∗βs⟩, loss happens whenever the
CCA over-flows the buffer, i.e., if the enqueued and dequeued
bytes differ by more than the buffer size in some time interval.
I.e., loss happens if for some interval [t1,t2],∫ t2

t1
λ(s)ds>C∗·(t2−t1)+C∗·βs

Specifically, on the path ⟨CL,λ(t),CL,λ(t)βs⟩, i.e., the smallest
link rate that can justify CCA’s observations, the amount of
loss is: ∆L(t0,t)=

∫ t
t0λ(s)ds−

(
CL,λ(t)·(t−t0)+CL,λ(t)·βs

)
Step 4. Convergence can only happen after the CCA causes

loss (until loss the CCA could be running on arbitrarily large
link rate from Step 1.). It needs to do this while ensuring that
the amount of loss it risks is bounded, i.e., for all intervals 0≤
t1≤ t2, ∆L(t1,t2)≤α for some constant α independent of C. We
compute a lower bound on the time to loss under this constraint.

Loss happens only if buffer overflows, i.e., in some interval
[t∗1 ,t

∗
2 ]

∫ t∗2
t∗1

λ(s)ds>C·(t∗2 −t∗1 )+C·βs. We also know that CCA
needs to ensure ∆L(t∗1 ,t

∗
2 )≤α. From this, loss happens only

if CL,λ(t∗2 )≥C−α/βs. See Appendix D.1 for details.

We compute time for CL,λ to increase to C−α/βs. Initially
CL,λ(0) = 0. Since CL,λ can only be computed after the first
RTT (from the definition of CL,λ), CL,λ is 0 over the entire
interval [0,RTT). This puts constraints on sending rate choices
in [0,RTT). Specifically, substituting CL,λ =0 in ∆L≤α, we
get,

∫ t2
t1 λ(s)ds≤α for all intervals [t1,t2] inside [0,RTT). Thus,

if we compute CL,λ(t) at any time t ∈ [RTT,2RTT), we get
CL,λ(t)≤ α

βs
(because on intervals 0≤ t1 ≤ t2 < 2RTT−RTT ,

i.e., t2 < RTT , the numerator in Eq. D.1, “
∫ t2

t1 λ(s)ds”, is at
most α).

We can similarly obtain that in interval [kRTT,(k+1)RTT),
CL,λ is at most k·(α/βs) (illustrated in Fig. 13). For CL,λ to
ramp up to C−α/βs, we need k≥C·(βs/α)−1. Hence, the
convergence time is at least k RTTs, or “C·(βs/α)−1 RTTs”.
Before loss, each RTT can be as large as Rm+βs (either due
to queueing delay or jitter), making the convergence time
=(C·(βs/α)−1)·(Rm+D)=Ω(C(Rm+βs)).

Generalizing Theorem 6.1. If the CCA wants to ramp up
from C0 to C while ensuring its risks at most f (C) loss, then
the convergence time is Ω(F−1(C)(Rm+βs)), where F−1 is
the inverse of F and F is defined by the recursion:

F(0)=C0 and, F(k)=F(k−1)+ f (F(k−1))/βs

If C is not in the domain of F−1, we evaluate F−1 at the
smallest value greater than C in the domain of F−1.

We obtain this result by replacing CL,λ(0)=C0 in Step 4.,
and ensuring that risk of loss ∆L≤ f (CL,λ). The function F(k)
tracks the maximum possible value of CL,λ at any time in the
interval [kRTT,(k+1)RTT).

D.1 Proof details
We fill in the details skipped in the proof.

Step 1. We will prove below that the CCA must cause
RTT >Rm+D or loss to avoid arbitrarily low utilization. Since
(1) the buffer is not big enough to build D seconds of delay
(because βs < D), and (2) the delay box in CBR-delay can
avoid adding any jitter, the end-to-end delays can always be
≤ Rm +βs ≤ Rm +D, forcing the CCA to cause losses (as it
can no longer cause RTT >Rm+D).

Proof. We prove by contradiction, i.e., if the CCA does
not cause RTT > Rm + D or loss, then we can construct an
execution where the CCA gets arbitrarily low utilization. Say
the CCA produces an infinite execution with RTT ≤Rm+D
without ever causing loss on a CBR-delay link (say link I)
with bandwidth CI and βs seconds of buffering. This exact
RTT sequence can be produced by another CBR-delay link
(say link II) with rate CII ≫ CI (see construction below).
Since the CCA is deterministic, and it gets same sequence of
RTTs as feedback on both links, it will make the same sending
rate choices on both the links.8 However, the CCA’s average
sending rate is ≈CI (as it does not build large queues on link I
given that its RTTs are at most Rm+D). Such sending rate gets
arbitrarily low utilization on link II for arbitrarily large CII .

Construction. Link II can produce same RTT sequence
as link I, by choosing jitterII(t)=RTT I(t)−Rm−qdelII(t)
(we use subscripts I and II to refer to quantities on link I and
II respectively). With this choice RTT II(t)=Rm+qdelII(t)+

8Note RTTs capture all the information that a CCA can obtain from
feedback. Metrics like loss, ACK-rate, etc. can be derived from packet send
events and RTT sequence [6].



jitterII(t) = RTT I(t). We just need to show that this is a
feasible choice for jitterII , i.e., 0≤jitterII(t)≤D.

jitterII(t)≤D.
We know RTT I(t)≤Rm+D, or RTT I(t)−Rm≤D,

thus jitterII(t)=RTT I(t)−Rm−qdelII(t)

≤D−qdelII(t)≤D

(as qdelII(t)≥0 by definition of qdel)

jitterII(t)≥0.
Since CII ≫CI , qdelII(t)≤qdelI(t)

(increasing C decreases congestive queueing delays)

As a result, RTT I(t)=Rm+qdelI(t)+jitterI(t)

≥Rm+qdelII(t)+jitterI(t)

Or, RTT I(t)−Rm−qdelII(t)≥jitterI(t)≥0
Thus, jitterII(t)=RTT I(t)−Rm−qdelII(t)≥0

Step 4. Loss only happens when CL,λ≥C−α/βs. For loss
to happen, the buffer needs to overflow, i.e., in some interval
[t∗1 ,t

∗
2 ] ∫ t∗2

t∗1
λ(s)ds>C·(t∗2 −t∗1 )+C·βs (D.2)

And, we also know the CCA need to ensure its risk of loss is
bounded, i.e., ∆L(t∗1 ,t

∗
2 )≤α, i.e.,∫ t∗2

t∗1
λ(s)ds−

(
CL,λ(t

∗
2 )·(t∗2 −t∗1 )+CL,λ(t

∗
2 )·βs

)
≤α

or,
∫ t∗2

t∗1
λ(s)ds≤CL,λ(t

∗
2 )·(t∗2 −t∗1 +βs)+α (D.3)

We can only meet both these constraints (i.e., Eq. D.2 and
Eq. D.3) when:

CL,λ(t
∗
2 )·(t∗2 −t∗1 +βs)+α>C·(t∗2 −t∗1 )+C·βs

or, CL,λ(t
∗
2 )>C−α/(t∗2 −t∗1 +βs)

or, CL,λ(t
∗
2 )>C−α/βs

E Synthesizing cc_probe_slow

We describe properties of probe intervals used in §6.2.1 to in-
form belief computation and encoding. Recall, probe intervals
are intervals that lead to increase in CL,λ through the equation:

CL,λ(t
∗)= max

0≤t1≤t2≤t∗−RTT(t∗)

∫ t2
t1 λ(s)ds

t2−t1+D

Measurement intervals influence probing intervals, or
future probe intervals cannot be shorter than past probe
intervals. Say in the past Cp

L,λ was computed over an interval

of length T p. In the future, CL,λ increases to C f
L,λ =Cp

L,λ+ε,
and was computed over an interval T f < T p. We will show
that this action risks losing more than constant loss, i.e., loss
can increase with C.

The amount of loss the future probe risks is (from difference

in net enqueued bytes, dequeued bytes, and buffer size):

∆L=
∫ T f

λ(s)ds−
(
C·T f +β

)
(E.1)

We make the following substitutions in Eq. E.1:

(1)
∫ T f

λ(s)ds=C f
L,λ·(T

f +D) (from the definition of CL,λ).

(2) C f
L,λ=Cp

L,λ+ε

(3) From the past probe, we know
∫ T p

λ(s)ds ≤ C·T p + β

(as loss did not happen, Eq. 6.3), and
∫ T p

λ(s)ds =
Cp

L,λ·(T
p+D) (from the definition of CL,λ). From these

two inequalities, we get Cp
L,λ·(T

p+D)≤C·T p+β.

We substitute C·T p+β=Cp
L,λ·(T

p+D), or Cp
L,λ=

C·T p+β

T p+D ,
to evaluate how much loss would happen on this network.

On making the substitutions, and algebraic simplifications,
we get:

∆L=
(CD−β)·(T p−T f )

T p+D
+ε·(T f +D) (E.2)

For T f <T p, ∆L can be an increasing function of C as long as
β<CD, e.g., β=Cβs for βs <D. Hence, loss is not bounded
by a constant independent of C.

A probe interval must start with drained queue. Say
[t1,t2] is a probing interval, i.e., it leads to an increase in CL,λ,
and it does not start with a drained bottleneck queue; then we
will show that the probe interval risks losing all the packets in
the bottleneck queue. As a result, to ensure losses are bounded,
a CCA needs to ensure that the bottleneck queue is bounded
at the beginning of the probe interval.

Say the [t1,t2] probe interval causes an increase in CL,λ at
time t, i.e., 0≤ t1≤ t2≤ t−RTT(t), and,

CL,λ(t)=

∫ t2
t1 λ(s)ds

t2−t1+D
>CL,λ(t−ε) (E.3)

for some small ε > 0. If this is not true, then [t1,t2] is not a
probing interval. By definition, CL,λ can only increase over
time, so CL,λ(t−ε)≥CL,λ(t2). Using this and Eq. E.3, we get,∫ t2

t1
λ(s)ds

t2−t1+D >CL,λ(t2), or,∫ t2

t1
λ(s)ds−CL,λ(t2)·(t2−t1+D)>0 (E.4)

The risk of loss during the probe is: ∆L = (bytes
already in queue) + (enqueued bytes) − (dequeued
bytes+buffer). We evaluate this equation on the path
⟨C=CL,λ(t2),β=CL,λ(t2)D⟩. It can produce observations till
time t2 as it is in the belief set (derived in §6.2.1), assuming
until t2, the CCA has not witnessed RTT >Rm+D, or losses.
Plugging this path into ∆L, we get:

∆L=q(t1)+
∫ t2

t1
λ(s)ds−

(
CL,λ(t2)·(t2−t1)+CL,λ(t2)·D

)
(E.5)

From Eq. E.5 and Eq. E.4, we get ∆L>q(t1).
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Figure 14: State transition lifetime of cc_qdel. Note, a link
rate change can cause a transition between any two states
(these “all to all” transitions are not shown).

F Proofs of performance
The synthesized CCAs ensure the synthesis invariant, but that is
not sufficient to meet the performance objectives due to under-
specification (§5.2). We build proofs, consisting of lemmas,
that describe the states the CCA visits, transitions it makes,
and the objectives it ensures. In the interest of space, we only
discuss lemmas for cc_qdel. Lemmas for cc_probe_slow are
similar but use CL,λ, and qU belief bounds instead of CL and CU .

Using the verifier, we checked that the lemmas are true
for cc_qdel running on the CCAC network model with
parameters ⟨C,Rm,D = Rm,β ≥ 3C·(Rm + D)⟩. We give a
summary of how the lemmas work together, describe how we
built them, and then discuss each lemma.

Summary. Fig. 14 describes how the lemmas are related to
each other. The lemmas are true over any 10Rm seconds trace
of the CCA’s execution. We stitch together lemmas to reason
about performance over arbitrarily long time horizons.

Whenever the link rate changes significantly, CL and CU
beliefs may become inconsistent. The CCA ensures that these
beliefs become consistent exponentially fast (Lemma F.2), they
converge to a small range exponentially fast (Lemma F.4), and
finally, the CCA reaches steady state (Lemma F.6), i.e., the
bottleneck queue reduces additively at rate proportional to C.9

The lemmas ensure that progress always happens in the same
direction. Specifically, the beliefs cannot become inconsis-
tent on their own, i.e., without link rate varying (Lemma F.1),
the beliefs cannot diverge post convergence (Lemma F.3),
the bottleneck queue cannot become unbounded after it con-
verges (Lemma F.5). In other words, once the CCA reaches
steady state (IV), it stays there. In the steady state (IV), cc_-
qdel gets at least 89% utilization, keeps RTTs to less than
4.4(Rm+D) seconds, and loses at most 3 packets in any Rm du-
ration (Lemma F.7). Additionally, Lemma F.8 ensures thatcc_-
qdel never incurs large loss events when probing for bandwidth
as long as the beliefs are consistent, i.e., in states II, III, IV.

Building lemmas using binary search. The lemmas
include non-trivial constants, we obtain all these by using
binary search. For instance, to compute utilization in steady
state, we ask the verifier if cc_qdel violates Lemma F.5 for
different choices of utilization. When we ask this query
for utilization = 100% the verifier gives a counterexample

9A CCA cannot drain the queue faster than this. Even if the CCA stops
sending packets, and the bytes are serviced at rate C, then the queue will only
drain by C·t bytes in time t.

showing that cc_qdel can get lower than 100% utilization.
However, when we repeat for 50%, the verifier says UNSAT,
implying on (worst-case) all executions that start in steady
state, cc_qdel gets at least 50% utilization. We repeat and find
that cc_qdel ensures 89% utilization in steady state.

LEMMA F.1. Initial beliefs are consistent =⇒ final beliefs are
consistent. Where, beliefs are consistent≡CL(t)≤C≤CU (t),
and we evaluate initial beliefs at t = 0 and final beliefs at
t=T =10Rm.

This lemma verifies that our belief computations are correct.
I.e., any bandwidth C that can produce the observations in the
trace from t=0 to t=T , and also produce observations before
t = 0 (i.e., C is in the initial belief set or “initial beliefs were
consistent”) should be in the final belief set (or “final beliefs
should be consistent”). This lemma is true for any CCA.

LEMMA F.2. (¬ Initial beliefs are consistent) =⇒ (final
beliefs move towards consistency ∨ final beliefs are consistent
∨ steady state objectives). Where,

Final beliefs move towards consistency≡
(CL inconsistent =⇒ C beliefs decrease)∧
(CU inconsistent =⇒ C beliefs increase)

CL inconsist.≡CL(0)>C, CU inconsist.≡CU (0)<C

C beliefs dec.≡At least one decreases∧None increases

At least one decreases≡
CL(T)·1.1<CL(0)∨CU (T)·1.1<CU (0)

None increases≡CL(T)≤CL(0)∧CU (T)≤CU (0)
C beliefs inc. is defined symmetric to C beliefs dec.

Steady state objectives≡(Utilization lower bounded

Inflight upper bounded ∧ No large loss events)

≡ S(T)−S(0)
C(T−D)

≥83%∧

∀t.θ(t)≤4.4C·(Rm+D)∧∀t.L(t)−L(t−1)≤3MSS

In each trace, the beliefs move towards consistency by
a multiplicative factor, i.e., exponentially fast. The 1.1×
factor is a worst-case movement over all possible 10Rm long
executions. In traces where CL, CU are far from C, beliefs
move quicker. Beliefs start moving slower (but at least 1.1×)
only when they are very close to C. So in practice the amount
that the beliefs move varies over time and the beliefs become
consistent much quicker than if they only improved by only
1.1× every 10Rm seconds.

To encode “final beliefs move towards consistency”, we
require that (i) at least one of the C beliefs move in the correct
direction and (ii) neither of them move in the wrong direction.
The second clause (i.e., ii) is needed to ensure that the progress
made by the CCA in consecutive traces adds up. Without this,
it can happen that CL increases and CU decreases in the first
trace, then CU increases and CL decreases, and so on. In each



trace at least one of CL or CU is moving in the right direction
(satisfying clause i), but their progress is not adding up.

LEMMA F.3. (Initial beliefs are consistent ∧ ini-
tial beliefs are converged) =⇒ (final beliefs are
consistent ∧ final beliefs are converged). Where,
beliefs are converged≡CL(t)≥ 27C

40 ∧CU (t)≤3C.

When the beliefs are in the range [ 27C
40 ,3C], they do not go

outside this range unless the link rate varies. This is despite
periodic belief timeouts (§5.1.2). The beliefs are only timed
out when they are well within this range, so that they stay within
the range even after the timeout if the link rate hasn’t changed.

Recall, we found the constants 27/40 and 3 by binary
search, i.e., the tightest range for which Lemma F.3 is true.

LEMMA F.4. (Initial beliefs are consistent ∧¬ initial beliefs
are converged) =⇒ (final beliefs are consistent∧ (final beliefs
shrink ∨ final beliefs are converged ∨ steady state objectives)).
Where,
Final beliefs shrink≡At least one improves ∧None degrade

At least 1 imp.≡CL(T)>1.7CL(0)∨CU (T)<1.7CU (0)
None degrade≡CL(T)≥CL(0)∧CU (T)≤CU (0)

The beliefs shrink by a multiplicative factor i.e., exponen-
tially fast. Similar to Lemma F.2, we need the “at least one
improves” and “none degrades” pattern to ensure that the
progress made by the CCA adds up.

LEMMA F.5. (Initial beliefs are consistent ∧ initial beliefs
are converged ∧ initial bottleneck queue is bounded)
=⇒ (final beliefs are consistent ∧ final beliefs are con-
verged ∧ final bottleneck queue is bounded). Where,
bottleneck queue is bounded≡q(t)≤3.3C·(Rm+D).

LEMMA F.6. (Initial beliefs are consistent ∧ initial beliefs are
converged ∧¬ initial bottleneck queue is bounded) =⇒ (final
beliefs are consistent ∧ final beliefs are converged ∧ (final
bottleneck queue is bounded ∨ bottleneck queue reduces)).
Where, bottleneck queue reduces≡q(T)<q(0)−CRm/2.

To drain the queue, the CCA takes time that is linear in the
queue size (i.e., it decreases queue additively, proportional
to the BDP in each trace). Note, no CCA can multiplicatively
reduce the number of bytes in the bottleneck queue. Even if
the CCA stops sending packets, and the bytes are serviced at
rate C, then the queue will only drain by C·t bytes in time t,
this is independent of the number of bytes in the queue (i.e.,
not a multiple of the queue size).

LEMMA F.7. (Initial beliefs are consistent ∧ initial beliefs are
converged ∧ initial bottleneck queue is bounded) =⇒ steady
state objectives.

LEMMA F.8. (Initial beliefs are consistent) =⇒
(rate increases =⇒ no large loss events). Where,
rate increases≡rate(T)>rate(0).

Once the C beliefs are consistent, when cc_qdel is probing
(or ramping up, i.e., “rate increases”), it never incurs any large
loss events losses. Large losses may happen if the link rate
decreases (there is no way to avoid this). Note, this is only true
on networks with large buffers, i.e., β≥3C·(Rm+D).

G Implementation issues in the Linux kernel
We originally implemented the synthesized CCAs in the
Linux kernel. We uncovered bugs in the kernel’s pacing
implementation and also found the cong_ctrl API to be
insufficient to implement the synthesized CCAs.

Pacing bug. To implement pacing, the Linux kernel
pre-computes the “time to send the next packet” as the inverse
of the pacing rate, i.e., inter-send-time. If the CCA’s sending
rate changes before the pre-computed time, then the kernel
implements the wrong sending rate until the time to send
the next packet. This leads to a discrepancy in the number of
packets actually sent vs. the number of packets that the CCA
wanted to send in a time interval.

In general, it is hard to implement pacing correctly. Pacing
constrains two things, (1) a lower bound on the inter-send-time
between packets and (2) number of packets sent in a time
interval. Practically, a pacing implementation cannot meet
both these constraints. Due to delays in CPU scheduling and
interrupt handling, an instruction’s execution may be delayed.
These delays can cause a pacing implementation to miss a
sending opportunity. When this happens, pacing implementa-
tion can either temporarily increase the sending rate to correct
for the delayed opportunity (there by violating the lower bound
on inter-send-time) or process the delayed sending opportunity
as is (there by not sending any bytes corresponding to the
delay and violating the constraint on total packets sent).

In fact, the pacing implementation of the genericCC [54]
(the framework that we used to implement the synthesized
CCAs in userspace over UDP) was also incorrect. We
modified it so that it faithfully honors the lower bound on
inter-send-time to ensure constant loss. Doing so creates a
minor discrepancy between the packets sent over an interval vs.
packets the CCA expected to send. Specifically, we maintain
last_sent_time and compute inter_send_time whenever
the CCA changes its sending rate. We launch a thread that
polls (busy waits) to check if the sender is allowed to send (i.e.,
current_time is ≥last_sent_time+inter_send_time).

The busy waiting can be avoided by setting two interrupts:
(1) sleeping for time = inter_send_time, and (2) whenever
ACKs are received. Before either of these two interrupts
hit, no packets are sent or received and so there is no reason
for CCA to change its rate, so it is okay to sleep until these
interrupts as the inter_send_time does not become stale
until these interrupts. Note, setting interrupts increases the
delays caused in scheduling threads. This can increase the
discrepancy between the actual packets sent vs. the packets
the CCA expected to send. The pacing implementation may
choose to transiently increase the sending rate to correct for



sending opportunities missed due to scheduling delays.

API. The Linux kernel also does not provide a direct API to
change the sending rate after packets are sent. The kernel only
gives a callback on ACKs. Since ACKs can be delayed due to
non-congestive delays, the CCA ends up setting a potentially
stale sending rate for O(D) time. This can be worked around
by setting up timer interrupts or instrumenting a callback on
packet send events. The genericCC API provides callbacks
on both packet send and receive events.

H Supplementary empirical evaluation
We empirically evaluate the synthesized CCAs across a
variety of ⟨C,Rm,D,β⟩ parameters. Specifically, we explore
combinations of C ∈ {24,48,96} Mbps, Rm ∈ {20,40,80}
ms, D = Rm, and β ∈ {1/16,1/8,1/4,1/2,1,2,4,8,16} BDP.
Each tuple is a 60 seconds long “run”. We discard the first
20 seconds of each run (to study steady-state behavior) and
compute metrics over the remainder.

To emulate jitter, we inject up to Rm seconds of random
ACK aggregation with a fixed average link rate. We sample
agg_delay ∈ [0,D = Rm) uniformly randomly. We serve
a batch of C· agg_delay bytes after waiting for agg_delay
seconds, ensuring an average bandwidth of C. We sample
agg_delay after every batch.

Fig. 15 and Fig. 16 show the utilization, delay, and loss
metrics for each run. The synthesized CCAs are withing their
proof bounds in each run. In some of the runs, cc_probe_-
slow’s utilization is less than 50% (expected steady-state
utilization in §6.2.1), this is because in those runs, it has not
reached steady-state at the end of the run.

Note, BBRv2 and BBRv3 are not robust against adversarial
jitter. On short buffers, they do not cause loss in steady-state.
This is needed to ensure a lower bound on utilization on
CBR-delay (Step 1. of Theorem 6.1), because otherwise their
observations could be explained by an arbitrary large link rate.
We believe this is why they get lower utilization when buffer
is small in Fig. 15.

Convergence time. We study convergence time in Fig. 18
and Fig. 19. We show a run with Rm =80 ms. For increasing
link rate, we double the link rate every 20 seconds starting
at 24 Mbps. For decreasing link rate, we halve the link rate
every 20 seconds starting at 96 Mbps. In both cases we set the
buffer size as the BDP when link (wire) rate is 96 Mbps. I.e.,
β=BDP=96 Mbps ·80 ms≈624 packets (each packet sends
1538 bytes on the wire in our setup).

cc_probe_slow meets its convergence time bounds. It con-
verges additively when link rate increases and exponentially
fast when link rate decreases (due to belief timeouts).

BBRv2 and BBRv3 have low loss on average, but incur large
loss events, i.e., O(BDP)whenever link rate increases, and they
start probing exponentially fast. This happens at the 20 second
and 40 second marks when the link rate increases (not shown).

To synthesize a CCA that follows the tradeoff choice
made by BBRv2 and BBRv3, we would need to remove the
under-specification in our synthesis invariant. We want to
be able to cause large losses when we are in state II (i.e., the
link rate changed, and we want to converge), but do not want
to cause large losses in state IV (when the link rate has not
changed, but we just want to check if it may have increased
after a belief timeout). Because of under-specification we
cannot distinguish between these scenarios during synthesis.
We leave this for future work.

We can manually design such a CCA using the version of
cc_probe_slow parametrized by f (.) and T∗ (§6.2.1). We can
adapt the loss allowance f (.) depending on if the CCA is in
steady-state (causing periodic small losses), or if the CCA
needs to converge (is not causing losses). This can also be
done in a fashion similar to BIC [59] and Cubic [31], i.e.,
loss allowance adapts depending on how much the link rate
changed. We leave this exploration for future work.

Fairness. Currently, our formal theoretical framework does
not provide any guarantees in multi-flow scenarios, nor does
it provide any predictions for the outcomes of multi-flow
experiments. Nevertheless, we explore the fairness properties
of the synthesized CCAs empirically.

Fig. 17 shows a run with C = 96 Mbps, Rm = 80 ms,
β= 1/2 BDP on an ideal link. We run 4 flows that share the
same bottleneck. Each flow is started 30 seconds after the
previous flow and lasts for 4×30=120 seconds. Results are
qualitatively similar for other parameter and network model
combinations. For each run (i.e., ⟨C,Rm,D,β⟩ combination
mentioned at the beginning of the section), we compute the
Jain’s fairness index (JFI) for the average rates of the 4 flows
between time 100 to 110 seconds (i.e., when all 4 flows
are running). When β ≤ 2BDP, the JFI for cc_probe_slow
across the parameter combinations is 0.94±0.06 (i.e., mean
± stddev) without jitter and 0.86 ± 0.11 with jitter. When
β> 2BDP, cc_probe_slow effectively runs cc_qdel as there
is no large loss event (§6.4). cc_qdel is unfair and gets JFI of
0.58±0.24 without jitter and 0.43±0.18 with jitter.

Even though cc_probe_slow was designed for single-flow
scenarios, it is able to converge to a fair share of the available
bandwidth. We believe this is because, to track changes in
link rate, cc_probe_slow increases its effective rate (CL,λ)
additively and reduces its effective rate (CL,λ) multiplicatively
allowing it to reach a fair allocation similar to AIMD [18].
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Figure 15: Average utilization and maximum queue use with varying bandwidth, propagation delay and buffer sizes for a link
with random ACK aggregation. The tuple at the top of each subplot shows ⟨C Mbps,Rm ms⟩.
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Figure 16: Packet loss with varying bandwidth, propagation
delay and buffer sizes for a link with random ACK aggregation.
The tuple at the top of each subplot shows ⟨C Mbps,Rm ms⟩.
We compute number of packets lost in every Rm long interval
and take average over all the intervals. We omit cc_qdel,
it causes O(BDP) losses with a higher constant factor than
BBRv1 (Fig. 9), and ends up skewing the graphs.
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Figure 17: With multiple flows, cc_probe_slow is able to
fairly share the available bandwidth. Every 30 seconds, we
start a new flow for a total of 4 flows shown by the different
colors. We use translucency to show the sending rates when
the graphs overlap.
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Figure 18: Convergence time for increasing C. cc_probe_-
slow_k converges additively when the link rate increases.
Increasing k increases utilization by a multiplicative factor
(Fig. 15) at the cost of increasing convergence time by a
multiplicative factor.
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Figure 19: Convergence time for decreasing C. cc_probe_-
slow_k converges exponentially fast when the link rate
decreases.
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