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Abstract

Cloud providers auction off unallocated resources at a low
cost to avoid keeping hardware idle. One such mechanism is
Harvest VMs (HVMs). These VMs grow and shrink as the
unallocated resources in a server change. While HVMs are
larger in size and less prone to eviction compared to other
low-cost VMs, their resource variations severely slow down
long-running, uninterruptible (hard to checkpoint/migrate)
workloads. We characterize HVMs from a major cloud
provider and discover large spatial variations in their stabil-
ity and resources. We leverage this diversity by predicting
which HVMs will be stable enough to run tasks without pre-
emptions. We use the predictions to inform scheduling and
resource acquisition decisions. Our evaluation with real work-
loads shows that we can reduce mean and tail (90th percentile)
job completion times by 27% and 44% respectively, at 75%
lower cost than regular VMs.

1 Introduction

Motivation. Failure to monetize idle hardware in cloud de-
ployments is a huge opportunity cost for cloud providers.
Providers typically provision hardware for peak demand, with
little over-subscription, to deliver an illusion of elastic re-
sources with strong isolation and performance guarantees.
Due to variations in demand, 25–30% hardware sits idle [3].
Many proposals try to address this problem, including better
resource packing using abstractions like FaaS (Function-as-
a Service), and auctioning unallocated capacity (unreliably)
using Spot or Burstable VMs [2, 18, 49, 74]. A latest advance-
ment towards isolating and exposing unallocated resources is
Harvest Virtual Machines [3].

Harvest VMs (HVMs) are variable-sized VMs co-located
with other regular (on-demand, high-priority) VMs. When
a new regular VM is allocated to a server, the HVM shrinks
in capacity, and when a regular VM finishes, it grows. This
agility allows HVMs to gather 2.5–7.5× more resources com-
pared to other low-priority low-cost fixed-sized VMs (e.g.,
Spot VMs) at lower eviction rates (§2.1, [3]). This creates a
new opportunity and a new challenge.

Large harvested capacity overcomes a major capacity bot-
tleneck [21, 60] allowing many large-scale applications [15,
16, 34, 47, 67, 68, 81, 89] in the financial, scientific, ge-
nomics, energy and meteorology sectors to run economically
in the cloud. However, HVM’s resource variations can signif-

icantly slow down these long, uninterruptible (hard to check-
point/migrate) applications due to preemptions (§2.3).

Prior efforts try to mask such overheads using scheduling,
resource acquisition, and load-balancing techniques (§5). Un-
fortunately, these efforts do not fit well for the combination
of HVMs and long, uninterruptible workloads. They either
address only VM evictions (not resource variations exhibited
by HVMs), or rely on the unique properties of Spot markets.
On the workload side, they often use a combination of check-
pointing, migration, replication, or application level changes.
These are prohibitive or impractical as uninterruptible work-
loads have large working sets, run at large scale, and rely on
many domain-specific libraries and frameworks with complex
state stored in memory (§2.2).

Our work. We seek to answer: “How can we best use HVMs
to run long, uninterruptible workloads?” We begin by char-
acterizing HVMs and a collection of long, uninterruptible
production workloads from a major cloud provider. We find
large spatial diversity in the stability and resources of HVMs,
i.e., some HVMs are more stable (change less often) or get
more resources than others. Simultaneously, we observe large
diversity in the runtimes of tasks in our workloads.

We leverage our observations in two ways to build
SLACKSCHED. First, we build a scheduling component that
avoids preemptions by better matching tasks to HVMs, i.e.,
runs longer tasks on more stable HVMs and vice versa. Sec-
ond, we build a resource acquisition component that improves
overall stability of the HVM pool by retaining relatively stable
HVMs and continuously de-allocating unstable HVMs.

In building SLACKSCHED, a key technical challenge is
identifying which HVMs are going to remain stable in the
future. Resource variations in HVMs can depend on a number
of factors which are hard to predict or control (e.g., the arrivals,
lifetimes, and placement of regular VMs). We work around
this using our insight that the distribution of time between
HVM resource changes is relatively stationary over time. We
use this to estimate when new resource changes are likely to
occur and match tasks to HVMs that are likely to not change
during task lifetimes.

We implement our scheduler as a pluggable component
of YARN [5], a popular cluster orchestrator, and the acqui-
sition component as a module that manages resource nego-
tiation between the cloud provider and YARN. We evalu-
ate SLACKSCHED under a variety of production workloads,
operating conditions, and HVM environments considering



HVM traces collected from multiple regions and time periods.
We find that SLACKSCHED reduces mean and tail (90th per-
centile) job completion times by 27% and 44%, respectively.

We note that our system does not make any assumptions
about, nor is reliant on, the cloud provider’s allocation pol-
icy. The diversity of unallocated resources is fundamentally
tied to the diversity in regular VM workloads. As evidence,
we consider future sources of resource variability, e.g., if un-
allocated resources change in capacity based on variations
in power supply to the data center due to renewable energy
sources [13, 23], in addition to variations due to regular VM
arrival/departure. We find SLACKSCHED has similar perfor-
mance in this new environment.

Summary. We make the following contributions:
• We characterize the behavior of real-world production

HVMs and long, uninterruptible cloud workloads (§2).
• We build a practical method to estimate future variations in

HVMs (§3.1.1, §3.1.2).
• We design and implement SLACKSCHED, a system that

enables the use of HVMs for large-scale, long-running,
uninterruptible workloads (§3, §3.3).

• We show that our scheduling and resource acquisition de-
cisions are effective in mitigating the overheads of HVMs
for varied workloads and environments (§4).

2 Characterization & Motivation
We first characterize HVMs (§2.1) and long-running uninter-
ruptible workloads (§2.2). Then, we focus on the overheads of
running these workloads on HVMs (§2.3). Our characteriza-
tion reveals two opportunities that motivate our design (§2.4).
We detail in §5 and Appendix B.1 why past efforts at man-
aging resource variability and building reliable infrastructure
out of unreliable services are ineffective for the combination
of uninterruptible workloads and Harvest VMs.

2.1 Harvest VMs

Background. HVMs dynamically expand and contract to
leverage the unallocated resources left by regular VMs. As
more (or fewer) on-demand VMs are placed on a server, an
HVM will shrink (or grow) its core count. We focus on HVMs
that harvest CPU cores but our work can be leveraged when
harvesting other resources (e.g., memory [32] and storage).
For Spot VMs to expose the same capacity as HVMs, one
needs to provision more and/or larger size Spot VMs. This
significantly increases the number of evictions to handle and
the management overheads (e.g., more copies of the OS).

HVMs are configured with a minimum size (e.g., {2,4,8}
CPU cores and {16GB, 32GB, 64GB} of memory). If an
HVM needs to shrink below its minimum size (e.g., because
of on-demand VMs), it will be evicted. HVMs are overall
cheaper in price than both Spot and on-demand VMs. Today,
HVM’s minimum size is charged at the Spot VM discount
(e.g., 48% to 88% cheaper than regular VMs [87]), and each
harvested core has a further discounted price.
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Figure 1: Resource variation in HVMs across clusters. The paren-
thesis in the legend lists (a) the mean magnitude of change size and
(b) mean inter-change time (hrs). The clusters are sorted in increas-
ing order of the mean inter-change time (C1–C8).

Overview. Prior work has studied properties of HVMs at an
aggregate level [3, 87]. However, to understand how broader
workloads might be impacted, we analyse HVMs at an indi-
vidual level and answer: (1) stability of HVMs: how often
and by how much do HVMs change?1 (2) spatial and tem-
poral diversity of HVMs: how do different HVMs compare
and how do they change over time? (3) impact of workloads:
how do the runtimes of long, uninterruptible workloads com-
pare to the resource variations of HVMs? With this goal, we
study HVM traces (from March 2019 and August 2021) for 8
clusters across 5 regions of a major cloud provider.

Stability. We measure the resource changes in terms of size:
number of added/removed cores, and frequency: time between
two consecutive changes (inter-change time or change inter-
val). We count HVM evictions as a resource change to size 0.2

We observe that different clusters witness different amounts
of activity from regular VMs, so we order the clusters, with
lower activity clusters on the bottom (C7–C8 in Figure 1).

Size of changes. Figure 1(a) shows the size of changes in
HVM resources across clusters. Positive changes signify re-
source growths and negative changes signify shrink events.
The mean magnitude of change is between ≈ 5 and 13 SMT
cores (simultaneous multi-threaded cores or hardware threads)
for different clusters. These are large variations, given the typ-

1While this aspect has been considered in [87], it was in the context of
short-running FaaS workloads and considered only a single cluster. Hence,
we revisit it in the context of our target workloads for more clusters.

2We do not separately study HVM evictions as these occur rarely relative
to task durations in our workloads ([3], §2.2).
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Figure 2: Spatial Variation — HVMs on different servers differ in
amount of resources harvested and stability.

ical minimum size of 2–8 SMT cores for an HVM and given
that 1–2 cores is a popular regular VM size [25, 41].3 Such
large variations can have significant performance implications
on applications (both positive and negative).

Frequency of changes. Figure 1(b) shows that the inter-
change times have high variance and long tails. For higher
activity clusters (C1–C6), we see 93–72% of changes within
an hour, a mean inter-change time of 26–224 minutes, and
a 95th percentile of 1.2–11.2 hours. For the lower activity
clusters (C7–C8), we see 61–55% changes within one hour, a
mean of 8–10 hours, and 95th percentile of a few days.

There are long time intervals without any resource changes
(e.g., multiple days) as well as short intervals (e.g., 84%
within one hour, 40% within 10 minutes, 16% within 1 minute
for cluster C2). Ideally, we want to get the most out of long
intervals without resource changes while coping with short
change intervals. To this end, we analyse how the change
intervals are distributed across space (HVMs) and time. This
helps understand if there are periods of high activity or if
changes are spread spatially. We show this analysis for a high
activity cluster (C2). Other clusters exhibit similar trends but
differ in the frequency and magnitude of variations.

Spatial diversity. The behavior of Spot and on-demand VMs
is determined by the VM configuration and the region. How-
ever, HVMs with the same configuration (e.g., minimum size)
can behave differently depending on the server they land on
(even within the same region). This diversity is directly tied to
competing VMs on the server as an HVM shrinks when new
competing VMs are allocated and grows when competing
VMs are deallocated.

For each HVM, for each 1-hour time window, we measure
the harvested cores (time-averaged over the 1 hour) and sta-
bility (number of changes), shown in Figure 2. HVMs with
a minimum size of 2, 4, and 8 get an average of 15, 17, and
20 cores respectively, which is 2.5–7.5× more resources than
the minimum size. At the same time, the top 10% HVMs get
a minimum of 36, 38, and 39 total cores while the bottom
10% get at most 3, 3, and 2 additional cores beyond the mini-
mum size. Given that the additional harvested cores have an

3A VM advertised with 2 cores may be mapped to a fractional amount
of SMT cores, e.g., 1.5 or 2.5 SMT cores, depending on the VM’s over-
subscription or headroom.
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Figure 3: Temporal Variation in a single HVM.

additional cost, HVMs will also exhibit a wide cost diversity.
All HVM minimum sizes show similar trends in terms

of stability. Figure 2(b) shows that larger minimum size
HVMs tend to be slightly more stable than smaller ones on
average. However, a specific larger minimum size instance
is not guaranteed to be stable. The worst 10% HVMs can
witness tens of changes in an hour while the relatively stable
50% HVMs witness up to one change in an hour.
Temporal variation. The stability and resources of a partic-
ular HVM can also change over time (e.g., a stable HVM
can start changing resources frequently). Figure 3 shows
an example HVM over a 15 day period (aggregated over 6h
windows to gauge longer term stability). For the first ≈ 4
days the HVM is very stable with over 40 harvested cores.
However, towards the end, the HVM witnesses large number
of resource variations.

2.2 Target Workloads
We focus on long-running and uninterruptible (hard to check-
point or migrate) workloads. Many applications fall into this
category, such as workloads in genomics, oil and gas, weather
& financial simulations, geo-spatial workloads, and many sci-
entific computing tasks [15, 16, 34, 47, 67, 68, 81, 89]. The
market for these workloads is worth tens of billions of dollars
with all major cloud providers pushing towards bringing them
to cloud environments [35, 45–47, 59, 67, 68].

These workloads are often run at large scale. Thus, cur-
rently they are predominantly run in on-premise clusters that
are perceived to be cheaper (compared to regular VMs) and
more reliable (compared to Spot VMs, due to evictions).
HVMs with their high resource availability and lower evic-
tion rates pave the way for economically and reliably running
these workloads in cloud environments. However, tasks in
these workloads tend to be long relative to the typical change
intervals of HVMs, hence a single task may see multiple re-
source variations leading to thrashing/preemptions. These
workloads often use domain-specific libraries in containerized
environments with large working sets [19, 34], making check-
pointing entire containers prohibitive and making tailored
checkpoints impractical due to the domain-specific nature of
the code coupled with a rich ecosystem where new libraries
are continuously added. Further, users of these applications
are typically reluctant to modify applications [30, 61].

For concreteness, we study two large-scale production ap-
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Figure 4: Analysis of task runtimes for two workloads (Genomics
analysis and Seismic simulations).

plications from a major cloud provider: (1) an application in
the oil and gas domain that performs seismic imaging simula-
tions [15, 81, 89], and (2) a genomics application that analyses
genetic material to identify various properties (e.g., disease
susceptibility for humans and physical traits of plants) [34].

To understand the impact of HVMs on these workloads,
we contrast the HVM resource change intervals (represent-
ing supply variability) with the task execution times of these
workloads (representing demand requirements). Figure 4
shows that tasks in both example applications are long, with a
median of tens of minutes, and tails of over 75 minutes. Task
distributions for different applications have various shapes
(e.g., Uniform and Gaussian for Seismic A & B, and Bounded
Pareto for Genomics). Task runtimes range from a few min-
utes to an hour either within a single job or across different
jobs (for Seismic B, not shown). In other words, there is a
sizable overlap in the range of the task runtimes and the range
of HVM inter-change times. This means that tasks in these
workloads are likely to witness a few resource change events
during their execution on typical Harvest VMs.

While Gaussian-distributed runtimes are common in typi-
cal cloud workloads, Pareto and Uniform distributions show
up because of concurrent tasks being heterogeneous. In the ge-
nomics applications, some tasks do the actual analysis while
others do verification or data transformation. In the seismic
simulations, different tasks perform imaging at different reso-
lution or area/volume depending on the analysis requirements.

2.3 Running Workloads on HVMs
The unpredictable and arbitrary resource changes, especially
shrink events, can cause tasks to slow down, thrash (for mem-
ory harvesting VMs [32]), or get preempted altogether. This
leads to execution time overheads and resource wastage since
preempted tasks need to be restarted from scratch (under un-
interruptible workloads) wasting any previous progress. We
measure these overheads comparing HVMs to on-demand
VMs running a mix of our target workloads. We use trace-
driven simulation for this analysis (methodology in §4).

Figure 5(a) shows the slowdown of jobs running on HVMs.
We define job slowdown as:

Slowdown(Job) =
ExecutionTime(Job) on HVMs

ExecutionTime(Job) on regular VMs

1 2 3 4
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Figure 5: Impact of HVM resource variations on workloads. (a)
HVM resource variations slow down jobs. Geometric mean slow-
down is 1.5× with some jobs even slowing down by more than 4×.
(b) HVM resource shrinks cause the preemption of a third of all
launched tasks, i.e., for each successful task, there are 0.5 failed
tasks on average. The same task might be preempted multiple times
causing preemptions per successful task to grow beyond 1.

When running on out-of-the-box HVMs, the geometric mean
job slowdown is 1.5× while some jobs are delayed by more
than 4×. Such high slowdowns make HVMs impractical for
many scenarios. This slowdown is caused by tasks being
preempted when the HVM shrinks. For instance a task that
needs 4 cores is preempted when the HVM shrinks to 2 cores
(or when the HVM evicts, i.e., shrink to size 0). Figure 5(b)
shows the distribution of tasks preempted across jobs. Around
a third of all tasks fail which leads to an additional resource
consumption of ≈ 20%. This directly translates into 20%
more cost. SLACKSCHED’s goal is to make the execution
of long uninterruptible workloads on HVMs similar to their
execution on regular VMs.

2.4 Opportunities for Improvement
To improve the efficiency of our target workload on HVMs,
we build on the following observations:
• There is a large diversity in both task runtimes (within a

job or across jobs) and HVM inter-change times and they
have significant overlap in their ranges. This provides an
opportunity to match long tasks to more stable HVMs and
short tasks to unstable HVMs, thus allowing efficient use
of HVMs by minimizing preemptions and reducing costs.

• Some HVMs are more stable than others and the stability
of a HVM can change over time. There is an opportunity
to improve workload execution times by acquiring and
retaining a higher fraction of instantaneously stable HVMs.

These two implications motivate our design for two HVM-
tailored components: (1) Scheduler that matches tasks to
HVMs and (2) Acquirer that continuously maintains a rela-
tively stable mix of HVMs. Leveraging these insights is not
straightforward as the behavior of HVMs depends on multiple
unknown factors (e.g., regular VM arrivals and departures).

3 SLACKSCHED Design
SLACKSCHED manages application execution on HVM clus-
ters rented by a cloud user. Many applications running in the
cloud run on top of cluster orchestrators like YARN, SLURM,
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Mesos, and others [5, 48, 53, 73], or their managed variants
(e.g., Azure Batch [14], AWS Batch [9], GCP Batch [36],
AKS [11], AWS EKS [55], and GKE [54]). SLACKSCHED
works within such orchestrators, replacing key components
to support more efficient use of HVMs. Cloud users can in-
stall modified version of orchestrator and/or providers can
incorporate SLACKSCHED within managed variants of the or-
chestrators. Since SLACKSCHED mostly improves execution
of individual jobs (§4) (in addition to improving aggregate job
execution), providers can use SLACKSCHED to even manage
workloads from different cloud users.

Figure 6 shows the architecture of SLACKSCHED and the
coordination of three main entities (shown in purple ). (1) A
per-node Node Manager, running on each node in the cluster,
that is responsible for reporting the health of the node and
running tasks on the node. In the case of HVMs, this is also
responsible for conveying instantaneous resource availability
on the HVM.4 (2) A per-job Job Manager (or “Application
Master” in YARN terminology) that is responsible for manag-
ing the progress of the tasks in a single job. (3) A cluster-wide
Resource Manager (RM) that receives requests for resources
from the Job Managers, schedules and maps these requests to
nodes, and conveys resource allocations to the job managers.
Then, the Job Managers launch containerized programs on
nodes based on the allocations. Additionally, we assume that
Job Managers annotate their requests with resource require-
ments and task runtimes. These can be estimated based on
input parameters and the type of computation (similar to [25,
50]). The Genomics and Seismic workloads that we consider
already have resource requirement annotations. We measure
sensitivity to errors in runtime estimates in §4.2.1.

SLACKSCHED consists of two key components (shown in
blue ): the Scheduler (§3.1) and the Acquirer (§3.2). The

Scheduler extends the default orchestrator scheduler and ex-
ploits the diversity in task runtimes and HVM resource varia-

4The hypervisor exposes the same number of logical cores to HVMs and
only changes their mapping to physical cores at runtime. User programs can
query the hypervisor for the core assignment anytime.

tions to match tasks to HVMs. The Acquirer interacts with the
Provider and the Resource Manager to acquire and maintain
a set of HVMs that are low cost, harvest more resources, and
are stable enough for the workload.

3.1 SLACKSCHED Scheduler
Typically, cluster schedulers decide on (1) the order of jobs,
(2) the order of tasks within a job, and (3) the placement
of tasks onto nodes. SLACKSCHED only affects the third
decision and uses the default orchestrator mechanisms for
the first two. The SLACKSCHED Scheduler tries to minimize
preemptions and improve completion times by intelligently
matching tasks to HVMs. Based on the task duration and
the stability of HVMs, the Scheduler assigns longer tasks to
more stable HVMs (predicted to maintain their resources for
a longer time) and shorter tasks to less stable HVMs. Our
design splits the operation into: (1) the Prediction Engine
(§3.1.1) that predicts the stability of each HVM in the future,
and (2) the Match Maker (§3.1.2) that matches tasks to HVMs
based on task duration and HVM stability.

3.1.1 Prediction Engine

Challenges. For match making, we need fine granularity
models that predict the resource availability of an individ-
ual HVM, e.g., “when will an HVM change its resources?”
or “how many resources will it harvest?”. This is very chal-
lenging since the resource availability of individual HVMs
depends on several unknown and uncontrollable factors such
as: (1) the arrivals and lifetimes of on-demand VMs, (2) the
placement/VM allocation policy of the provider, and (3) the
requested configuration of the HVM (e.g., minimum size).
Even the cloud provider does not have full future knowledge,
especially about when the on-demand VMs will come and go.

Prior efforts at modeling HVM resource availability [3]
are not sufficient since they only make predictions at an ag-
gregate level, rather than an individual level. For instance,
they provide estimates such as “X% of HVMs will survive
in the next hour”, or “HVMs will expose on average Y num-
ber of cores in a specified time window”. In addition, point
prediction approaches similar to [25, 43, 78, 88], which use
various machine learning models including SVMs, CNNs,
and LSTMs [62, 75] to model resource availability, are not
a good fit for HVM environments for two main reasons: (1)
similar historic resource variations may provide widely dif-
ferent behaviors in the future, which makes point estimates
inaccurate; (2) HVMs depict large skews in their behavior
(§2.1) which makes the use of computational methods such
as machine learning hard.

Key insights. Instead of making point estimations, we take an
alternate approach of distribution-based predictions and con-
ditional probabilities. This was inspired by prior work on task
scheduling with unknown runtimes [63, 69, 83]. These make
probabilistic estimates instead of exact predictions, leverag-
ing the fact that the distribution of task runtimes is known
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Figure 7: The inter-change-time distribution varies only slightly
at different time scales. The legend lists the time period within the
trace for which the CDF was computed. The historical inter-change
time distribution is a good estimate of the future distribution.

even though the exact runtime is unknown. They proceed by
computing the expected remaining runtime by conditioning
on the task’s progress or age. For instance, given a task has
been running for 1 hour, what is the probability that it will
run for 30 more minutes.

Similar to prior work, we condition on the inter-change
time distribution to estimate the remaining time until the next
change for a specific HVM. We find that the inter-change
time distribution is relatively stationary over time. Thus, even
though the exact times when resource changes will occur is
unknown, the distribution of time between changes is known.
Figure 7 shows the inter-change time distribution at multi-
ple time scales. There are little changes in the distribution
over multiple hours/days. As validated in Section 4.5, this
approach generalizes to other future sources of variability
in unallocated capacity, such as using renewable energy to
power a data center, an emerging approach for sustainable
cloud computing [12, 76, 77].

Workflow. The Prediction Engine maintains a rolling snap-
shot of the inter-change time distribution in the past D days
(D = 1 in our implementation) for estimating the completion
probability, i.e., the probability that a task will complete suc-
cessfully on an HVM without getting preempted. We use
completion probability as a proxy for HVM stability as it
allows us to rank if an HVM is stable enough for a task.

We approximate the completion probability for a task and
HVM as the probability that the HVM will not shrink during
the lifetime of the given task. In reality, tasks can complete
successfully despite witnessing resource shrinks, e.g., if the
node is underutilized and has enough resources even after
shrinking. However, since we only use the completion proba-
bility to obtain a relative ranking of nodes, its absolute value
is of little consequence. This approximation also allows ro-
bustness to inaccuracies in task runtime estimates. Future
work can consider predicting shrink size for more accurate
estimation of completion probability and potentially better
job execution on HVMs.

We compute completion probability in two steps. First, we
estimate the likelihood that there will be a resource change
event during the lifetime of a task on a particular HVM. Sec-
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Figure 8: We use the inter-change time distribution for computing
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ond, we estimate the likelihood that this resource change
event will be a shrink event. Finally, the Match Maker com-
bines these likelihoods (§3.1.2). Note, there are other ways to
compute completion probability (Appendix B.2).
Likelihood of resource change. To estimate the probability of
a change during the lifetime of a task, we condition on the
inter-change time distribution (Figure 8). Given that e time
has elapsed since the last resource change event, we compute
the probability that the next change event will occur within d
time from now, where d is the duration of the task.
Likelihood of shrink. To compute the probability for the next
event to be a shrink, we perform an n-gram (bigram) analy-
sis [17] on the sequence of resource changes. Specifically, we
look at a historical sequence of resource changes and calcu-
late how often a shrink occurs after a growth and how often
a shrink occurs after another shrink. We use this to compute
the probability that the next event will be a shrink given that
the last one was a growth (or shrink) event. We find that such
shrink probabilities are also relatively stationary over time.

3.1.2 Match Maker

To minimize task preemption likelihood, the Match Maker
places tasks on HVMs with a high completion probability for
the task. When no HVMs with available resources yield a
high completion probability, the Match Maker may wait for
occupied HVMs to free up resources (“delayed scheduling”).
We now describe how we calculate the completion probability,
perform delay scheduling, and our matching logic.

Completion probability. The Prediction Engine maintains
the inter-change-time and shrinking probability distributions
(§3.1.1). The Match Maker uses these distributions to com-
pute the completion probability as follows:

Pc(x,e,d) = 1−P
[

shrink occurs during
task lifetime

]
= 1−P

[
resource change ∧ change occurs

is shrink during task lifetime

]
= 1−Ps(x) · (1−P(X > e+d|X > e)) (1)



Table 1 shows the definition for each symbol. Recall that
tasks are annotated with their estimated runtimes (§3).

Delayed scheduling. In certain situations, waiting for a more
stable node (i.e., with better completion probability) might
be a better choice than picking from the currently available
resources. For example, rather than launching a task on a node
with low completion probability, it might be better to wait for
old tasks to complete on a node that is relatively stable but
may be fully occupied with previous tasks. This implies a
non–work–conserving schedule where the scheduling of tasks
may be delayed even when resources are available.

It is challenging to decide whether to wait or run with cur-
rent the best resource without future knowledge. A strawman
approach is to launch tasks on an HVM only when it provides
a threshold completion probability. However, this may cause
the scheduler to delay indefinitely. To tackle this, we formu-
late the cost and benefit of waiting by estimating the expected
completion time obtained from various decision choices. We
derive expected completion time as follows:

Ewc(x,a,e,d)

= E
[

time spent waiting
for node to free up

]
+E

[
time for completion

and preemptions

]
= a+ p ·d

+(1− p) ·
(

E
[

time wasted
to preemption

]
+E

[
time after

restart

])
= a+ p ·d +(1− p) · (w+Ewc(g,0,0,d)) (2)

e′ = e+a

p = Pc(x,e′,d)

w = E
(
X− e′|(X > e′)∧ (X < e′+d)

)
This equation incorporates when will the node free up

resources (a), the duration of the task (d) if it completes
succesfully (with probability p), time potentially wasted (w)
in case the task fails (with probability 1− p), and the cost of
rescheduling the task (Ewc(g,0,0,d)). Note that this is the
worst-case expected completion time since we reschedule
a task on the worst-case node that has just started (has not
remained stable at all, i.e., e = 0). In reality, after preemption,
the task may be started on a stable node. Since we know the
estimated duration of tasks, their resource requirements, and
how long they have been running, we can deterministically
compute when the node will have enough resources to run
a given task (a). The time wasted (w) is the expected time
between when the task starts and when the node shrinks, given
that the node does shrink during the lifetime of the task.

Workflow. The Match Maker uses the above formulation
(Equation 2) to schedule the task on the node which gives
the best expected completion time. If this node does not
have resources at the moment, then it waits and reconsiders
the decision at the next scheduling iteration. This automati-
cally includes both preferring nodes with higher completion
probability and considering to wait for nodes to free up. For

Symbol Interpretation
Pc Probability of completion
X Inter-change time distribution
x ∈ {g,s} Denotes whether last change event was growth or shrink.

Default is growth for a newly started node
e Time elapsed since last resource change event
d Remaining duration of the task under consideration
Ps Probability that the next resource change event is a shrink
Ewc Expected worst case completion time of the task
a Time between now and when the node will have enough

resources to run the task under consideration. If the node
currently has enough resources, then a = 0

w Expected time wasted due to a shrink occurring before task
completion

Table 1: Symbol definitions.

completeness, we list the pseudo-code for the Match Maker
in Algorithm 1 in the Appendix.

3.2 SLACKSCHED Acquirer

Challenges. Ideally, we want to maintain a set of HVMs
whose stability matches the runtime of the tasks. However, in
addition to task runtime information, this requires full knowl-
edge on: (1) how unallocated resources are distributed across
servers in a data center, and (2) how stable these resources
are at any point in time. As a user (or cluster orchestrator),
this information is not available or possible to model. Even as
the provider, these metrics are only instantaneously available
while HVM patterns may change over time (Figure 3).

Approach. We use a simple “exploration-exploitation” strat-
egy to navigate the set of potential HVMs that the provider
can offer to maintain a stable pool of HVMs. The Acquirer
starts with a random mix of HVMs and periodically identifies
the worst HVMs and decommissions them, gradually con-
verging to a more stable pool of HVMs. The Acquirer defines
“worst” as the most recently changed HVMs. This simple
strategy works when there the HVM pool is unstable relative
to the HVMs that can be returned by the provider (4.3).

In our implementation, the Acquirer runs hourly and deal-
locates 10% of allocated HVMs. Concurrently, it requests an
equal number of new HVMs from the provider to maintain the
same amount of cluster resources.5 To avoid getting a HVM
on the same server as the one just deallocated, the Acquirer
first requests new HVMs and then deallocates the unwanted
ones. To avoid task preemptions, it gracefully decommissions
HVMs before deallocating them. The scheduler stops send-
ing new tasks to the decommissioning HVMs and once all
running tasks complete, the Acquirer deallocates them.

To maintain a target set of resources in the midst of load
variations, the Acquirer works with a scaling policy that main-
tains the cluster utilization between a lower and upper bound
(i.e., 60 to 80%). It requests or deallocates VMs whenever the
utilization falls outside of this target range. When scaling-in,
we decommission and deallocate the worst HVM first. The

5Currently, we consider mixes with only HVMs. One can consider a mix
of both HVMs and regular VMs.



Acquirer can work with different scaling policies [8, 10], and
the scaling can be decoupled from the intentional dealloca-
tions/allocations. In our implementation, scaling is triggered
every hour coupled with the Acquirer. Scaling also allows
maintaining resources as HVMs grow/shrink.6 Algorithm 2
in the Appendix shows the pseudo-code for the Acquirer.

We studied different choices for the Acquirer’s trigger pe-
riod. We found that trigger periods in half to two hours range
yield similar performance as 1 hour. Longer periods can
lead to a stale cluster (with unstable HVMs) and shorter peri-
ods can operate on limited historical information (especially
for HVMs allocated in the previous trigger) leading to erro-
neously deallocating potentially stable HVMs. In general, the
trigger period should be chosen based on the range of HVM
inter-change times and task runtimes.

3.3 Implementation
We implement SLACKSCHED within YARN [5] version 3.3.0.
This includes the changes by [3] that make YARN aware of
HVM resource variations. We added an Acquirer module
that interfaces with the provider’s VM request API and mon-
itors statistics about allocated nodes. We updated Job Man-
agers to convey task runtime estimates as part of Resource
Requests and updated the matching logic to use our design
(§3.1). These changes (highlighted in Figure 6) preserve
compatibility with other scheduling features, e.g., reserva-
tions [27], delay scheduling [86], affinity [4], etc. Specifically
for multi-dimensional packing [38], the affinity between tasks
and nodes can be defined as a combination of resource match
and stability match. We believe that our implementation can
be easily ported to other cluster managers.

4 Evaluation
We evaluate SLACKSCHED to answer the following questions:
1. How much benefit do we gain solely from scheduling

under different HVM resource profiles? (§4.2)
2. How robust is our design to various workload characteris-

tics, operating conditions and estimation errors? (§4.2.1)
3. How much do we benefit from resource acquisition? (§4.3)
4. How does SLACKSCHED handle time varying arrival rate

and compare with other VM types? (§4.4)
5. How does SLACKSCHED compare to prior techniques for

addressing VM evictions? (Appendix B.1 and §5).
6. What happens under future and more extreme sources of

resource variability (e.g., as a result of using renewable
energy)? (§4.5)

4.1 Methodology

Setup. Since HVMs are highly variable and our method is
probabilistic, to reach any conclusive results, we needed to
run each experiment at a large scale: ≈ 50 jobs, where each
job lasts hours and requires 100s of regular VMs. However,

6Due to growth/shrinks/evictions, instantaneous cluster utilization can
fall outside our target range in the time between two scaling triggers.

running such long and large-scale experiments was imprac-
tical on a real testbed. Thus, we evaluated our system using
Hadoop’s discrete time simulator [1, 6]. This simulator ac-
curately mimics real-world setups, with only ≈ 1.3% error
on completion times and ≈ 1.5% error on resource utiliza-
tion [24]. The simulator runs actual YARN Resource Man-
ager [5] code and only simulates the Node Managers, Job
Managers, and clock and communication layers. Using a sim-
ulator also allows us to maintain the exact same trace of HVM
availability, ensuring fair A/B testing across experiments.

Resource traces. We use two sets of production resource
traces from Microsoft Azure: (1) HVM traces: time series of
HVM resource availability that includes the time and sizes
of growth/shrink events for each HVM; (2) On-demand VM
traces: VM arrival times, lifetimes, and placement decisions
made by the provider’s production allocator. Our dataset
includes traces from 8 clusters (700− 2000 servers each)
across 5 regions from two time periods (March 2019 and
August 2021). For our experiments, we randomly select 64
HVMs for each cluster. This translates to 160–480 regular
VMs in terms of resources as each HVM gets 2.5–7.5× more
resources than their minimum size (§2.1).

Extensions to the simulator. To ensure different scheduling
schemes witness the same HVM changes, we extend the
simulator to replay HVM traces. When an HVM shrinks,
containers are killed (in increasing order of their start time)
until the available resources on the node exceed or equal the
used resources on the node. When an HVM grows, new
containers may be allocated to the node. These are the default
Resource Manager behaviors. In other words, a task does not
benefit from cores beyond what it asked for and is killed as
soon as it gets fewer than its requested cores.

In addition, for resource acquisition experiments (that con-
tinually request new HVMs), we want every experiment to
receive the same HVMs when requesting the same configura-
tion at the same time. To ensure this, we replay the on-demand
VM allocation traces to reconstruct the state of the unallocated
resources. Alongside, we add a simulated HVM allocator to
place HVMs on servers with unallocated resources. We study
different allocation policies including random, load-balancing,
and packing. Note that we use the simulated HVM allocator
only for the resource acquisition experiments (§4.3, §4.4).

Workloads. Our traces are based on a collection of two work-
load categories running in a production environment: Seismic
and Genomics [16, 22, 34, 58, 59]. We log their execution
to build distributions of task runtimes, number of tasks, and
resource requirements. We sample from these distributions to
build traces of jobs/tasks. We model job arrival as a Poisson
process (similar to [38–40, 56]) and study a variety of mean
inter-arrival times.

Schemes. For scheduling, we compare SLACKSCHED (4)
against the three schemes (1-3 below):
1. CapacityScheduler (or CapS): The default scheduler in
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Figure 9: Normalized job completion time (nJCT) relative to
CapacityScheduler across HVM traces from different clusters.
SLACKSCHED improves JCT across different clusters.

YARN. Considers resource requirements (cores and mem-
ory) of tasks to select nodes [7].

2. Oracle: Uses future knowledge to schedule a task on an
HVM only if it is guaranteed to complete before any future
resource shrinks, and skips allocation otherwise. Skip-
ping implicitly delegates scheduling to other nodes or later
times. This provides an upper-bound for SLACKSCHED.

3. SLACKSCHEDNODELAY (or SSNODELAY): Only uses
current resources to make decisions and does not wait for
nodes to free up resources. It places tasks on nodes with
the highest completion probability.

4. SLACKSCHED (or SLACKS): Uses expected completion
time to match tasks to nodes and can wait for nodes to free
up resources (§3).

Oracle is a good proxy for job completion time on a regular
VM cluster that has same total resources as the HVM cluster.
This is because Oracle does not cause any task preemptions
and the clusters are sized to ensure little to no task queuing.

Metrics. We study job completion time (JCT), normalized
job completion time (nJCT), and dollar cost, where,

nJCT(Job) =
JCT(Job) with scheme
JCT(Job) with baseline

JCT distributions show absolute and tail completion times,
while the normalization allows us to study the impact on jobs
with different runtimes. A smaller nJCT i.e., nJCT ∈ (0,1) is
better, while nJCT ∈ (1,∞) is worse. nJCT of 0.7 translates
to (1− 0.7) ∗ 100 = 30% reduction in JCT (cf. [40]), and
1/0.7 = 1.43× factor of improvement or speedup (cf. [39]).
For computing nJCT, we use baseline as CapacityScheduler
unless mentioned otherwise.

For aggregating across jobs, we study (a) mean reduction
in JCT (1−GeometricMean(nJCT )), (b) reduction in mean
JCT (1− mean JCT with scheme

mean JCT with baseline ), (c) reduction in tail (90th per-
centile or p90) JCT.

We delegate a subset of these metrics to Appendix B.5.

4.2 Scheduler Evaluation
We evaluate SLACKSCHED on the production clusters from
our dataset under the same workload trace. Figure 9 shows the
geomean nJCT relative to CapacityScheduler. Mean reduc-
tion from SLACKSCHED ranges from 0 to 24% (i.e., geomean
nJCT from 1 to 0.76). Improvements from SLACKSCHED are
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Figure 10: SLACKSCHED’s mean reduction in JCT is 20–27%.
Waiting for more stable nodes provides a further 0–7.5% reduction.
SLACKSCHED reduces mean JCT by 25–27% and p90 JCT by 20–
44%. We use Seismic A workload (§2.2) for this experiment which
has uniformly distributed task runtimes.

close (within 13%) to the Oracle.
The frequency of resource changes relative to the task du-

rations govern how much overhead HVMs impose and in turn
govern how much benefit we can get from SLACKSCHED. We
observe that benefits are greater in clusters that witness more
activity from regular VMs (i.e., more HVM resource changes).
Specifically, for the last two clusters (C7 and C8) which have
the least amount of activity from regular VMs (§2.1), HVMs
cause little slowdown for the particular workload.

We zoom into the JCT and nJCT distributions for a high-
activity cluster (C2). We also study a low-activity cluster (C8)
with longer tasks. These represent cases when HVMs impose
non-trivial overhead. Figure 10 shows that SLACKSCHED’s
mean reduction in JCT is 20–27%. 40% of the jobs see
more than 30% reduction in their completion times. 0–15%
jobs have nJCT > 1, implying their JCT increases. Since
our method is probabilistic, SLACKSCHED can make poor
decisions for some individual tasks compared to a random
matching decision (taken by CapacityScheduler). However,
on average, SLACKSCHED’s matching decisions are better
than random. SLACKSCHED reduces mean JCT by 25–27%
and p90 JCT by 20–44%. In §4.2.1, we vary various aspects
of the workload.

Impact of “waiting” for stable nodes. Figure 10 also quanti-
fies the impact of waiting for stable, but currently busy nodes
(§3.1.2). As shown, SLACKSCHED provides an additional
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Figure 11: nJCT for workloads with different task runtime distribu-
tions. SLACKSCHED consistently improves JCT.

0–6% mean reduction in JCT compared to when this fea-
ture is disabled (SLACKSCHEDNODELAY). Specifically, for
the high-activity cluster (C2), SLACKSCHEDNODELAY is
already close to Oracle and there is little scope of further
improvement from waiting.

Resource waste reduction. We compare the fraction of
resource waste (i.e., work wasted due to preemptions di-
vided by total work done). We find that CapacityScheduler,
SLACKSCHED, and Oracle waste 20–40%, 3–20%, and 0%
work respectively, i.e., SLACKSCHED reduces resource waste
by ≈ 20% compared to CapacityScheduler. This saving
comes from the better task-to-HVM matching that avoids
preemptions and reduces wasted work or resources.

4.2.1 Improvement Conditions and Robustness

SLACKSCHED’s gains depend on the range and distribution
of task runtimes relative to the inter-change times of HVMs.
We find that SLACKSCHED provides benefits in JCT when:
• There is spatial variation in stability of HVMs and spatial

variation in runtime of concurrently running tasks. Other-
wise, different mappings from tasks to nodes are equivalent.

• The range of HVM inter-change times is similar to the
range of task runtimes. If tasks are too short, there is not
much room for improvement as there are few preemptions.
If tasks are too long, preemptions cannot be avoided.

Both conditions hold for a large set of workloads and HVM
resource profiles (regions/clusters) (§2). We now describe our
robustness experiments that led to these findings.

Task runtime distribution. We change the task runtime dis-
tribution in accordance with different workloads (§2.2) under
the same HVM resource variations (high activity cluster, C2).
This is shown in Figures 10a (Uniform), 11a (Gaussian),
and Figure 11b (Bounded Pareto). Workloads with higher
variance (Uniform and Pareto) see more improvements from
SLACKSCHED since they benefit more from matching of tasks
to resource variability.

Task duration. We analyzed the impact of varying the
range of task runtimes. We use uniformly distributed task
runtimes between 1 and X minutes (max task time) and
vary X . Figure 12 shows that the improvements in both
SLACKSCHED and Oracle diminish with short tasks (< 20
min) as they are rarely preempted (no scope for improvement).
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Figure 12: nJCT with varying task runtimes. SLACKSCHED is
effective for a wide range of task runtimes.
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Figure 13: HVM stability required for different task durations at
different confidence levels. To obtain 70% confidence in completion
without preemption for a task with duration d, we roughly need a
node to have been stable for 2.6× d time. We compute “stability
required” using inverse CDF of inter-change-time distribution.

SLACKSCHED’s improvements also diminish when tasks be-
come too long as it becomes harder to find stable nodes. This
is because SLACKSCHED relies on past history to predict the
future, e.g., to schedule a task of duration d with 70% confi-
dence, it needs a node which has remained stable for roughly
2.6d time (Figure 13). On the other hand, Oracle can identify
future stable nodes even if they have been unstable in the past,
allowing it to find matching nodes for long tasks.

Cluster load. We increase the load by reducing the mean inter-
arrival time of jobs while keeping the same set of HVMs, task
runtime distributions, and task resource requirements. Fig-
ure 14 shows that when load becomes very high (≈ 100% at
3 mins mean inter-arrival, as shown in the first data point), the
benefits of SLACKSCHED diminish, since the relative number
of stable nodes decrease and SLACKSCHED has a harder time
finding nodes for longer tasks (same reason as shown before
with Figure 13). Oracle still provides improvement since it
has full future knowledge and can still find stable nodes.

Task runtime misestimates. SLACKSCHED uses estimates
of task runtimes to compute completion probabilities and
expected completion times. We evaluate SLACKSCHED’s sen-
sitivity to misestimates by injecting errors into the runtimes
reported while still running tasks with their original runtimes.
To inject errors, for each task, we deviate its duration estimate
by a number sampled uniformly between 0 and some max
percentage error. Negative error implies underestimates and
positive error implies overestimates. Figure 15 shows there is
little impact of misestimates on SLACKSCHED. Completion
times inflate when runtimes are underestimated. This is be-
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Figure 14: nJCT with varying job inter-arrival rates. SLACKSCHED

improves JCT at different cluster loads.
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Figure 15: nJCT with varing errors in task runtimes estimates.
SLACKSCHED improves JCT even under modest errors.

cause runtime underestimation results in overestimating the
completion probabilities and matching tasks to nodes which
may not remain stable through the lifetime of the task. We see
more impact on Oracle, as it makes many close calls which
are rendered incorrect due to inaccurate duration estimates.

4.3 Acquirer Evaluation
We study benefits from SLACKSCHED-Acquirer considering
settings where there is room for improvement in job comple-
tion time between Oracle and SLACKSCHED-Scheduler.
Methodology. Different experiments differ in their schedul-
ing and acquisition logic. In all cases, HVMs are continu-
ously (minimum size chosen uniformly randomly) requested
to maintain ≈ 64 HVMs worth of resources. For these experi-
ments, we do not use the scaling policy (§3.2) and consider a
constant job arrival rate. Our baseline uses the CapacitySched-
uler with no intentional HVM deallocations.

These experiments require a simulated HVM allocator and
we test our system with three policies to decide which server
to place an HVM on: (1) Balancing, picks the server with
the most amount of unallocated resources, (2) Packing, picks
the server with the least amount of unallocated resources, (3)
Random, picks a random server. All policies only consider
servers which have enough resources to support the minimum
size of the HVM at the time of allocation.
Results. Figure 16 shows qualitatively similar improvements
across different HVM allocation policies solely from the
SLACKSCHED-Scheduler (16–24% mean reduction). We also
obtain 8–23% mean reduction solely from the SLACKSCHED-
Acquirer. The Scheduler and the Acquirer complement each
other to provide a mean reduction of 27–32%.
Improvement conditions. In addition to the improvement
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Figure 16: nJCT relative to baseline. SLACKSCHED’s scheduling
and resource acquisition complement each other to reduce JCT.
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Figure 17: Cluster size over time in terms of cost ($) per hour.
Acquisition logic adapts to time-varying job arrival rate. HVMs are
cheaper than Spot and Regular VMs due to the discounted harvested
cores. Legend lists the total cost ($) in parentheses.

conditions in §4.2.1, resource acquisition is useful when there
is room for improving the stability of HVMs in the cluster.
This happens if (1) there are not enough stable HVMs in the
cluster and (2) there are better HVMs that can be returned
by the allocation policy. For instance, when most HVMs are
allocated on buffer servers, there is little scope to improve
the HVM mix. Providers typically reserve buffer servers to
satisfy sudden demand for regular VMs. In the absence of
sudden demand changes for regular VMs, HVMs on buffer
servers witness few resource variations and cause little to
no job slowdown. In our implementation, we disallow the
Balancing policy from placing HVMs on buffer servers (≈ 5%
of all servers). This is because, in practice, multiple users
will request HVMs from the cloud provider and a single user
will only get a small portion of HVMs allocated on buffer
servers. In general, we expect individual users to see HVMs
that behave closer to those allocated by the Random policy.

4.4 Scaling and Cost Comparison
We study how SLACKSCHED adapts to a workload that varies
over time. For such a workload, we compare the performance
(JCT) and cost of maintaining homogeneous pools of HVMs,
Spot VMs, and regular (on-demand) VMs.

Methodology. To generate the time-varying workload, we
vary the mean job arrival rate between 1× and 4× the base
rate every 6 hours. For the environment, the Acquirer main-
tains a homogeneous cluster of Spot VMs, HVMs or regular
VMs in separate runs. Runs without SLACKSCHED (i.e.,
SpotVM, HVM, RegularVM in Figures 17 and 18) use Ca-
pacityScheduler. For these cases, the Acquirer does not inten-
tionally deallocate servers and only uses the scaling policy to
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Figure 18: nJCT relative to Spot VM. SLACKSCHED improves
JCT over out-of-the-box HVMs under a time-varying job arrival rate.
Vanilla HVMs yield better JCT than Spot VMs.

tune the cluster size in response to changing job arrival rate,
randomly choosing which VMs to deallocate.

We use the Random allocation policy (from §4.3) to deter-
mine the placement of HVMs and Spot VMs. Spot VMs are
fully evicted if resources are needed for competing regular
VMs allocations (i.e., they do not shrink like HVMs). We ob-
tain the cost of regular and Spot VMs from [74]. For HVMs,
we follow the same pricing scheme as [3, 87] and charge their
minimum size at the same price as Spot VMs of the same size
and charge additional harvested cores at a 50% discount.7

Scaling results. Figure 17 shows that the SLACKSCHED-
Acquirer scales the cluster in and out in response to the chang-
ing job arrival rate for all VM types. It maintains a rela-
tively constant core utilization over time (not shown). Across
schemes, the Acquirer maintains similar core utilization and
amount of resources. Different schemes have different num-
ber of preemptions and resource waste.

Cost results. Figure 17 also shows that HVMs are 40%
(1.67×) and 75% (4×) cheaper than Spot and regular VMs
respectively. The≈ 14.2% difference in cost with and without
SLACKSCHED ($444 vs. $518) mainly comes from (1) less
resource waste, and (2) intentional deallocations that move
utilization closer to the upper bound (80% threshold §3.2).

JCT results. Figure 18 shows that HVMs without
SLACKSCHED already provide mean reduction of 20% com-
pared to Spot VMs as HVMs shrink instead of getting evicted.
The Scheduler+Acquirer in SLACKSCHED provide a mean
reduction of 33% over Spot VMs even under a time-varying
arrival rate and without incurring extra cost.

4.5 Case Study: Renewable Energy Sources
To further test the generality of our approach, we consider
a future source of resource variability: renewable energy
sources (e.g., wind and solar power). Power generated from
renewable energy sources typically fluctuates over time as
these sources are driven by weather conditions that are in

7We are only interested in price variations across space but not across
time. Temporal variations in price would affect all HVMs (at least within the
same region) symmetrically and would not significantly affect our acquisition
decisions. Thus, we pick costs from [74] at a single point in time. In reality,
Spot VM prices, and in turn HVM prices, are volatile over time and can
range between 48% and 88% of the regular VM price.
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Figure 19: SLACKSCHED improves completion times even under
power variations due to renewable energy sources.

turn variable over time. We study the case of HVMs that
vary in resources due to a changing power supply in addition
to on-demand VM arrivals/departures. In these scenarios,
leveraging an unreliable resource supply is a necessity rather
than an optimization.

Methodology. We use the same simulation environment and
workloads as before. For generating HVM traces under re-
newable energy variations, we use wind power generation
traces from the ELIA dataset [66]. We scale the power trace
such that the cluster is fully powered at the max power in
the trace. For simplicity, we also assume that cores pow-
ered on a server are proportional to the power supplied to
the server. We replay the on-demand VM allocation traces
and the power generation traces. Whenever power drops, we
reduce the power supply to servers that have unallocated re-
sources, effectively reducing the size of the HVMs. When no
such servers exist, we evict on-demand VMs (assuming they
are migrated out). When power rises, we increase the power
supply to servers that have a lower supply than the max power,
effectively increasing the size of the HVMs. Additionally, we
relaunch previously-evicted on-demand VMs to maintain the
cluster load (assuming they are migrated in).

Results. We observe that the inter-change time and shrink dis-
tributions are still relatively stationary when taken for a day.
However there are more variations at smaller time scales (e.g.
when taken for a window of 6 hours). Since SLACKSCHED
maintains a large enough snapshot (i.e., 1 day) of the HVM
distributions, it still prevents preemptions and improves com-
pletion times. Figure 19 shows that SLACKSCHED provides
a mean reduction in JCT of 15%. Similar to Figure 10, ≈
25% jobs degrade (nJCT > 1) relative to their execution with
CapacityScheduler.

5 Related Work
Related work not covered in §3.1 can be classified into:

Checkpointing, migration, and replication. Work like [71,
80] use a combination of these techniques to mitigate the
impact of preemptions caused by Spot VM evictions. These
are prohibitive for long uninterruptible workloads. In Ap-
pendix B.1, we empirically show that SLACKSCHED outper-
forms these techniques for our target workloads by profiling
their checkpointing overheads.



Multiple markets. [20, 43, 70, 71, 80, 84] mitigate the im-
pact of VM evictions by picking Spot VMs from different VM
types/sizes and regions (i.e., markets). Different markets can
have different prices and eviction rates. These efforts estimate
Spot VM eviction likelihoods based on spot prices and bids.
However, pricing-based prediction techniques may not neces-
sarily predict resource changes (e.g., HVMs shrinking) which
cause workload preemptions. Further, SLACKSCHED yields
improvements even for a cluster of HVMs taken from a single
market (i.e., the same minimum size and region) as shown in
Figure 10b. For such setting, we expect multi-market tech-
niques will perform similar to the CapacityScheduler as they
will not distinguish between VMs taken from a single market.

[44, 70, 80, 84] use an ensemble of on-demand and Spot
VMs. SLACKSCHED provides improvements without requir-
ing on-demand VMs that cost 2–10× more than HVMs.

Bidding, pricing, and admission control. [57, 85] use bid-
ding strategies to control VM eviction likelihoods. These
may not control HVM resource variations which can preempt
workloads. Further, pricing-based techniques only work when
evictions and pricing are related. These methods do not gen-
eralize to flat pricing models [51, 74]. Many of these efforts
are also scoped to different workloads (e.g., machine learning
training [44], database queries [84]) and do not generalize to
long uninterruptible workloads.

In a setting where jobs have different levels of importance,
admission control [65] techniques may be useful. This is
orthogonal to SLACKSCHED.

Scheduling and task placement. Most prior work assumes
fixed resources over time [33, 37–40, 52, 64, 79, 86]. They
leverage multi-dimensional packing, locality, fairness, and
workload properties (e.g., dependencies). These ideas are
orthogonal to our work and SLACKSCHED can leverage them
to further improve scheduling objectives including efficiency,
fairness, and completion times. However, HVMs incur large
resource variations which are not addressed by this prior work.

Other proposals [3, 56, 87] adapt cluster scheduling frame-
works to address resource variability. However, they are
scoped to specific workloads that are less challenging than
long-running uninterruptible workloads. [56] only considers
elastic query processing workloads, [87] considers server-
less functions with short tasks, and [3] just reacts to resource
variations rather than avoiding preemptions. The closest to
our work is SciSpot [51] that schedules tasks using a time-to-
eviction distribution for Spot VMs. It does not consider wait-
ing for VMs to free up resources. Waiting (delayed schedul-
ing) provides better performance (§4.2). SciSpot also does
not provide any empirical evaluation and only estimates po-
tential for improvement using theoretical analysis. It does not
consider resource acquisition and only works with bathtub-
shaped time-to-eviction distributions.

Addressing underutilization. Prior work has also looked at
underutilization in cloud environments [78, 88]. These try

to co-locate latency critical services and batch workloads to
reduce resource fragmentation and improve cluster utilization.
These techniques often also leverage the fact that jobs do
not use their peak resources all the time and thus oversub-
scribe resources. However, such oversubscription is typically
only done for first party workloads and not customer facing
services [3, 42, 72, 88]. Hence, providers still deal with
unallocated resources [3, 88].

Serverless computing or FaaS (Function-as-a-Service) give
up on the VM abstraction and allow providers more flexibil-
ity to dynamically spread computation and reduce resource
fragmentation. HVMs try to preserve the VM abstraction
allowing use of harvested capacity for workloads that are not
suited for serverless computing, e.g., workloads that maintain
state, need the abstraction of a machine, shared libraries, or
operating system, or require significant software engineering
effort for porting to FaaS abstractions.

While HVMs expose unallocated resources, SmartHar-
vest [82] also opportunistically exposes allocated but unused
resources. It uses machine-learning techniques to decide
when and how many resources can be harvested without harm.
SmartHarvest resource variations are fine-grained (millisec-
ond level) and would require additional scheduling solutions.

6 Conclusion
Cloud providers have started using new mechanisms like Spot
VMs and Harvest VMs (HVMs) to monetize their unallocated
resources. After a characterization of HVMs and workloads,
we identified that prior work falls short at running long, un-
interruptible workloads in such variable environments. To
enable these workloads, we propose SLACKSCHED, which
leverages distribution-based predictions to maintain a stable
pool of HVMs and intelligently match tasks to their ideal
resources. SLACKSCHED successfully enables running work-
loads on HVMs as if they were run on regular VMs.

We experimentally demonstrated that our proposal reduces
resource waste by 20% and improves mean and tail (90th

percentile) completion time by 27% and 44% respectively,
at 75% lower cost than regular VMs. We also show that our
system generalizes to cases where resource variations are
caused by a variable power supply. We plan to contribute our
code to the Apache YARN project [5].
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A Pseudocode
For completeness, we list the pseudocode for the algorithms
used by the SLACKSCHED Scheduler and SLACKSCHED Ac-
quirer. Algorithm 1 is used by the scheduler to match tasks
to nodes, and Algorithm 2 is used by the acquirer to select
nodes to deallocate.

Note, in our implementation we ensure that the allocations
and deallocations by the Acquirer do not nullify those done
by the scaling policy by considering the net change in number
of nodes that needs to be there. We also let the scaling policy
scale out the cluster after intentional deallocations instead
of Acquirer directly requesting VMs after decommissioning
VMs (i.e., lines 6, 7, 8 of Algorithm 2 are coupled in our im-
plementation). The implementation can be done in a way that
avoids this coupling. Decoupling would actually be needed
for cases when scaling and acquisition are triggered indepen-
dently.

SLACKSCHED for heartbeat-based scheduling. In some
cluster managers (e.g., Apache YARN [5]) scheduling is trig-
gered on heartbeats [7]. In these cases, the node to schedule
on is implicitly decided based on the node which sent the
heartbeat. However, SLACKSCHED needs to explicitly decide
which node a task should be mapped to. Thus, we adapt the
scheduling logic so that the scheduler can wait for heartbeats
from other nodes rather than necessarily assigning tasks to
the random node that sent a heartbeat. Specifically, for the
node that sent the heartbeat, if the task meets a threshold
completion probability, we directly schedule the task on that
node, otherwise, we look at the expected completion times
offered by all the other nodes and wait for more heartbeats if
there are better nodes. The pseudocode for this logic is listed
in Algorithm 3. This adds negligible overhead to the time
complexity of the scheduler.

Algorithm 1: SLACKSCHED Scheduler
1 Function MatchMaker(Task t, Nodes N)
2 W ← []
3 d← duration(t)
4 for n ∈ N do
5 x← lastChangeDirection(n)
6 a← nextAvailTime(n, t)
7 e← timeSinceLastChange(n)
8 // Using formulation in §3.1
9 c← expectedCompletionTime(x,a,e,d)

10 W.append((c,n))
11 end
12 (c∗,n∗)← min(W )
13 if feasible(t, n∗) then
14 schedule(t, n∗)
15 end
16 // Otherwise re-visit decision
17 // at the next scheduling event

18 end

Algorithm 2: SLACKSCHED Acquirer
1 deallocateFraction = 0.1
2 Function OnEpochEnd(Nodes N)
3 N.sort()
4 // increasing order of timeSinceLastChange
5 toDeallocate← N[: N.size()∗deallocateFraction]
6 requestNVMs(toDeallocate.size())
7 gracefullyDecommission(toDeallocate)
8 // trigger scaling

9 end
10

Algorithm 3: SLACKSCHED Scheduler
1 Function ScheduleOnNodeUpdate(Tasks T, Machine m)
2 w← []
3 x← lastChangeDirection(m)
4 e← timeSinceLastChange(m)
5 for t ∈ T do
6 if ¬ feasible(t, m) then
7 continue
8 end
9 d← duration(t)

10 p← completionProbability(x,e,d)
11 if p > threshold then
12 w.append((p, t))
13 end
14 end
15 if w is not empty then
16 (p∗, t∗)← max(w)
17 schedule(t∗, m)

18 end
19 else
20 N← getAllNodes()
21 t← shortestTask(T )
22 MatchMaker (t, N) // (Algorithm 1)
23 end
24 end
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Figure 20: nJCT relative to CapacityScheduler without check-
pointing. SLACKSCHED outperforms the checkpoint-migrate tech-
nique. We set the time-per-checkpoint as 1 min and 2 min in the two
schemes with checkpointing.

B Additional Evaluation
B.1 Comparison to prior work for Spot VMs
Prior work [28, 29, 71, 80] employs checkpointing, migra-
tion, and replication techniques to mitigate the impact of
preemptions. We empirically show that these techniques are
insufficient to curb the overheads imposed by HVMs on our
target workloads.

Checkpointing and migration. A common approach to
handle Spot VM preemptions is to periodically checkpoint
tasks [28] and when they get evicted, restore them in other
servers. Universal checkpointing techniques like the one
docker uses based on CRIU [26, 31] only handle effects in-
side the container and ignores any external ones (e.g., external
storage for intermediate outputs). The workloads we study do
not perform checkpointing. On preemptions, tasks are simply
restarted inside a new container with reinitialized external
storage for intermediate results and outputs. Implementing ef-
ficient and complete checkpointing would require application
specific insights and expensive engineering.

For the sake of evaluation, we measure overhead for check-
pointing memory and processor state using the docker mecha-
nism [31]8. This checkpointing delays tasks by≈ 1–2 minutes
per checkpoint even for containers with less than 1 GB of
memory9. This relatively large delay is because our appli-
cations rely on stateful shared libraries, open multiple TCP
connections, and open a number of files in memory. These
findings are consistent with [19].

To study the end-to-end impact of checkpointing, we extend
our simulation framework to stall tasks being checkpointed.
We delay each task by X=1,2 minute(s) per checkpoint (inde-
pendent of container memory size) and run checkpoints every
10 minutes. On preemptions, tasks are restarted from the
latest checkpoint and assume no overhead to migrate check-
points. Figure 20 shows the normalized job completion time.
We find that even with such optimistic checkpoint-migrate
overheads, SLACKSCHED outperforms checkpoint-migrate

8These checkpoints are not restorable, a complete checkpoint would
include local files and external storage/effects.

9The checkpointing latency (i.e., time when the checkpoint is available
for restoration) is typically larger than the delay added to the task.
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Figure 21: nJCT relative to CapacityScheduler without replication.
Replication only slightly improves job completion time.
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Figure 22: nJCT relative to CapacityScheduler. There may be
multiple ways to define affinity between a task and an HVM and/or
compute completion probability.

techniques.

Replication. Another alternative to handle preemptions is
to launch multiple tasks replicas and once one completes,
kill the rest. This technique is common in MapReduce sys-
tems [29]. In our implementation, we launch 3 replicas for
each task and kill other replicas as soon as any replica com-
pletes. Figure 21 shows that while replication reduces JCT
for the CapacityScheduler, SLACKSCHED outperforms both
CapacityScheduler with and without replication. In addition,
replicas lead to a higher number of total preemptions and a
much higher load.

B.2 Alternate method for computing the com-
pletion probability

There are other ways of computing completion probability
beyond the method presented in §3.1.1. One notable way is
to construct the distribution of time between consecutive re-
source change and resource shrink events10 and then compute
completion probability as:

Pc(e,d)

= P
[

shrink does not occur
during task lifetime

]
= P

[
shrink occurs

after task lifetime

]
= P(Y > e+d|Y > e) (3)

where Y is the distribution of time between resource change
and resource shrink events, e is the time elapsed since the

10Note, the inter-change time distribution also captures the time between
two consecutive resource growth events.
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(b) Uninterruptible jobs.

Figure 23: SLACKSCHED improves JCT in a cluster serving a mix
of interruptible and uninterruptible workloads.

last resource change event, and d is the (remaining) duration
of the task being considered for scheduling. We observe
that using this alternate method provides similar benefits as
SLACKSCHED as shown in Figure 22. The default method of
SLACKSCHED provides mean reduction of 19% compared to
CapacityScheduler, while the alternate method provides mean
reduction of 17% compared to CapacityScheduler. The main
difference is that SLACKSCHED also conditions on whether
the previous resource change event was growth or shrink to
compute completion probability, which gives slightly better
completion probability estimates.

B.3 Mixing interruptible and uninterruptible
We study how SLACKSCHED performs in a cluster serving
a mix of interruptible and uninterruptible jobs. Interruptible
jobs are those that have negligible checkpointing and migra-
tion overhead.

Methodology. We simulate interruptible workloads by run-
ning checkpoints every minute and add zero overhead for
checkpointing and migration. On preemption, the tasks restart
from the latest checkpoint. No checkpointing or migration is
done for uninterruptible jobs. The cluster serves a 50-50 mix
of uninterruptible and interruptible jobs that arrive according
to a Poisson process. We use the same distribution to generate
task runtime and resource requirements for uninterruptible
and interruptible jobs. Recall, these distributions were based
on genomics and seismic workloads, which are hard to check-
point and migrate. As such the interruptible jobs are synthetic
— they do not necessarily resemble a real workload — unlike
the uninterruptible jobs.

Results. Figure 23 shows the distribution of nJCT relative
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Figure 24: SLACKSCHED-Acquirer converges to a set of relatively
more stable HVMs.

to CapacityScheduler separately for the uninterruptible and
interruptible jobs. SLACKSCHED shows qualitatively similar
improvement as before for uninterruptible workloads. For
interruptible workloads, there is no significant difference in
completion times across schemes.

B.4 Acquirer with known ground truth
To verify the operation of SLACKSCHED-Acquirer and to
study its convergence properties, we study its operation on
HVMs with known ground truth stability. To establish the
ground truth, we generate a synthetic regular VM arrival and
placement trace such that HVMs on half the servers are unsta-
ble (i.e., witness frequent regular VM arrivals and departures);
while HVMs on other half are stable (i.e., witness infrequent
regular VM arrivals and departures). We use the scaling pol-
icy that maintains a fixed resource budget and use the random
policy for HVM allocation. We measure and compare the
number of stable and unstable HVMs with and without using
SLACKSCHED-Acquirer. Figure 24 shows that the Acquirer
converges to a mix with a larger portion of stable HVMs.

B.5 Absolute JCT metrics
Due to space constraints we show normalized JCT for most
experiments in the main text. Here we show graphs for ab-
solute JCT. In all our experiments, we observe that mean
reduction in JCT follows similar trends as reduction in mean
JCT. We compute reduction in mean and p90 JCT relative to
CapacityScheduler unless mentioned otherwise.
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Figure 25: All clusters. cf. Figure 9. The bars correspond to mean
JCT and whiskers correspond to p90 JCT.
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Figure 26: Stable cluster. cf. Figure 10b.
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Figure 27: Volatile cluster. cf. Figure 10a.
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Figure 28: Different task runtime distributions. cf. Figure 11.

0 20 40 60 80 100 120

Max task time (mins)

20

40

60

%
R

ed
u

ct
io

n
in

M
ea

n
,

p
9

0
JC

T

Oracle

SlackSched

Figure 29: Varying max task time. cf. Figure 12. The lines corre-
spond to mean JCT and whiskers correspond to p90 JCT.
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Figure 30: Varying load (job arrival rate). cf. Figure 14. The lines
correspond to mean JCT and whiskers correspond to p90 JCT.
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Figure 31: Robustness to errors in task runtime estimates. cf. Fig-
ure 15.

Balancing Packing Random

HVM Allocation Policy

0

20

40

60

80

%
R

ed
u

ct
io

n
in

M
ea

n
,

p
9

0
JC

T

AcquirerOnly SchedulerOnly Acquirer+Scheduler Oracle

Figure 32: Resource acquisition evaluation. cf. Figure 16.
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Figure 33: Comparison with checkpointing and migration. cf.
Figure 20. Time in legend shows time-per-checkpoint for Capaci-
tyScheduler.
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Figure 34: Comparison with replication. cf. Figure 21.
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Figure 35: Renewable energy setting. cf. Figure 19.
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